开发篇1:使用原生api和Langchain调用大模型

对大模型的调用通常有以下几种方式:方式一、大模型厂商都会定义http风格的请求接口,在代码中可以直接发起http请求调用;方式二、在开发环境中使用大模型厂商提供的api;方式三、使用开发框架Langchain调用,这个就像java对数据库的调用一样,可以直接用jdbc也可以使用第三方框架,第三方框架调用会封装一些共性问题,比如参数配置,多数据库统一调用方式,连接处理,缓存处理等等,使用第三方框架调用往往会大幅提高开发效率。下面逐一说明几种调用方式
方式一: post请求调用,以openai(chatgpt)为例,demo如下,举例代码语言为python,http调用各种语言都有这个能力,个人建议还是python来做大模型相关开发,pandas对数据集合处理已经比较成熟,内存运算性能也很高,下面的例子中requests为python的requests的模块
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=json_data,
)
其中head封装了在openai上注册的key
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + openai.api_key,
}
json是一个python的字典,封装了模型名称和messages(prompt请求)
json_data = {"model": model, "messages": messages}
方式二:python使用使用大模型厂商提供的api(openai为例),首先要在开发环境中pip安装tiktoken和openai模块,openai有两个接口,1个是对话模型,1个语言模型,调用方式分别如下
pip install tiktoken openai
#调用Completion api,openai会以json返回回答
data = openai.Completion.create(
model="text-davinci-003",
prompt="牛肉面故乡在哪里",
max_tokens=1000,
temperature=0
)
#调用 chat Completion api,chat Completion api是GPT3.5开始使用的问答模型,可以使用这个模型实现一问一答
messages=[
{
"role": "user",
"content": "你好"
}
]
data = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages = messages
)
方式三:用使用langchain调用,使用langchain自带的OpenAI类,
from langchain.llms import OpenAI
llm = OpenAI(model_name="text-davinci-003")
llm("牛肉面起源于哪个城市")
Langchain有model,Data Connection,chains,Memory,Agents,Callbacks,每个模块的使用会在下一篇说明,OpenAI类属于model模块,如下图所示,Model 模块的主要职责1个是提示词的生成,1个是解决对大模型的调用的封装,这个有点像java里面Springboot template对jdbc的封装,封装后统一了对各类模型的调用

相关推荐
ariesjzj1 小时前
DeepSeek时代的Large-scale LLM推理
大模型·llm·deepseek·推理优化·大规模ep
赋范大模型技术社区11 小时前
大模型训练的“最后一公里”:为什么强化学习(RL)不可或缺?
大模型·微调·sft·模型训练·rl
愤怒的可乐12 小时前
从零构建大模型智能体:构建可调用工具的智能体
人工智能·大模型·智能体框架
leo030813 小时前
深度解析Hugging Face Accelerate:`Trainer`背后的“隐形”分布式引擎
pytorch·大模型·llm·ddp
core51215 小时前
[硬核解析] 从感知到交互:InternVideo 1/2/2.5 全系列架构演进与原理解析
架构·大模型·交互·视频·video·intern
flying_131415 小时前
推荐大模型系列-NoteLLM: A Retrievable Large Language Model for Note Recommendation(三)
自然语言处理·大模型·llm·推荐系统·对比学习·notellm·协同微调
万俟淋曦16 小时前
【论文速递】2025年第32周(Aug-03-09)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
阿正的梦工坊1 天前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
Yeliang Wu1 天前
XTuner大模型微调实战指南:核心原理与Ubuntu 22.04全流程详解
大模型·微调·xtuner
山顶夕景1 天前
【LLM应用】Codex & Codex CLI使用
大模型·llm·ai编程