深度学习10种attention机制(快收藏)

1️⃣标准注意力机制:

Soft Attention:一种灵活的注意力分配方式,允许模型在序列的不同部分分配不同程度的关注。

Hard Attention:一种严格的注意力分配方式,模型只关注序列中的特定部分。

2️⃣自注意力(Self-Attention):允许序列内部的元素相互交互,广泛用于Transformer模型。

3️⃣多头注意力(Multi-Head Attention):在Transformer中使用,允许模型同时关注序列的不同方面。

4️⃣空间注意力(Spatial Attention):在计算机视觉任务中使用,关注图像的不同空间区域。

5️⃣通道注意力(Channel Attention):特别关注不同特征通道的重要性,常见于视觉处理的卷积神经网络。

6️⃣层次注意力(Hierarchical Attention):在多层次结构(如文档、段落、句子)中使用,分别对不同层级的数据应用注意力。

7️⃣时间注意力(Temporal Attention):用于处理时序数据,如视频分析或音频处理,关注时间序列的不同部分。

8️⃣图注意力网络(Graph Attention Networks, GATs):用于处理图结构数据,允许节点根据其邻居节点的特性分配注意力。

9️⃣协同注意力(Co-Attention):在多模态学习中使用,比如结合视觉和文本信息,模型在两种类型的数据上同时应用注意力。

🔟交叉注意力(Cross-Attention):允许来自两个不同序列的元素相互作用,常见于序列到序列的任务中。

相关推荐
小白学大数据7 分钟前
实战:Python爬虫如何模拟登录与维持会话状态
开发语言·爬虫·python
FriendshipT10 分钟前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
平谷一勺35 分钟前
数据清洗-缺失值的处理
python·数据分析
末世灯光43 分钟前
时间序列入门第一问:它和普通数据有什么不一样?(附 3 类典型案例)
人工智能·python·机器学习·时序数据
开心-开心急了1 小时前
Flask入门教程——李辉 第一、二章关键知识梳理(更新一次)
后端·python·flask
锦***林1 小时前
用 Python 写一个自动化办公小助手
开发语言·python·自动化
www.021 小时前
微信克隆人,聊天记录训练专属AI(2.WeClone训练模型)
人工智能·python·微信·聊天克隆人·微信克隆人
Gitpchy2 小时前
Day 20 奇异值SVD分解
python·机器学习
MediaTea3 小时前
Python 第三方库:matplotlib(科学绘图与数据可视化)
开发语言·python·信息可视化·matplotlib
草莓熊Lotso3 小时前
C++ 方向 Web 自动化测试入门指南:从概念到 Selenium 实战
前端·c++·python·selenium