深度学习10种attention机制(快收藏)

1️⃣标准注意力机制:

Soft Attention:一种灵活的注意力分配方式,允许模型在序列的不同部分分配不同程度的关注。

Hard Attention:一种严格的注意力分配方式,模型只关注序列中的特定部分。

2️⃣自注意力(Self-Attention):允许序列内部的元素相互交互,广泛用于Transformer模型。

3️⃣多头注意力(Multi-Head Attention):在Transformer中使用,允许模型同时关注序列的不同方面。

4️⃣空间注意力(Spatial Attention):在计算机视觉任务中使用,关注图像的不同空间区域。

5️⃣通道注意力(Channel Attention):特别关注不同特征通道的重要性,常见于视觉处理的卷积神经网络。

6️⃣层次注意力(Hierarchical Attention):在多层次结构(如文档、段落、句子)中使用,分别对不同层级的数据应用注意力。

7️⃣时间注意力(Temporal Attention):用于处理时序数据,如视频分析或音频处理,关注时间序列的不同部分。

8️⃣图注意力网络(Graph Attention Networks, GATs):用于处理图结构数据,允许节点根据其邻居节点的特性分配注意力。

9️⃣协同注意力(Co-Attention):在多模态学习中使用,比如结合视觉和文本信息,模型在两种类型的数据上同时应用注意力。

🔟交叉注意力(Cross-Attention):允许来自两个不同序列的元素相互作用,常见于序列到序列的任务中。

相关推荐
wazmlp0018873694 分钟前
第五次python作业
服务器·开发语言·python
尘缘浮梦6 分钟前
websockets简单例子1
开发语言·python
不懒不懒6 分钟前
【从零开始:PyTorch实现MNIST手写数字识别全流程解析】
人工智能·pytorch·python
helloworld也报错?7 分钟前
基于CrewAI创建一个简单的智能体
人工智能·python·vllm
啊阿狸不会拉杆20 分钟前
《机器学习导论》第 10 章-线性判别式
人工智能·python·算法·机器学习·numpy·lda·线性判别式
超龄超能程序猿21 分钟前
Python 反射入门实践
开发语言·python
玄同76529 分钟前
Python Random 模块深度解析:从基础 API 到 AI / 大模型工程化实践
人工智能·笔记·python·学习·算法·语言模型·llm
AIFarmer33 分钟前
在EV3上运行Python语言——环境设置
python·ev3
yunsr38 分钟前
python作业3
开发语言·python