上海AI实验室等开源,音频、音乐统一开发工具包Amphion

上海AI实验室、香港中文大学数据科学院、深圳大数据研究院联合开源了一个名为Amphion的音频、音乐和语音生成工具包。

Amphion可帮助开发人员研究文本生成音频、音乐等与音频相关的领域,可以在一个框架内完成,以解决生成模型黑箱、代码库分散、缺少评估指标等难题。

Amphion包含了数据处理、通用模块、优化算法等基础设施。同时针对文本到语音、歌声转换、文本到音频生成等任务,提供了特定的框架、模型和开发说明,还内置了各类神经语音编解码器和评价指标。

尤其是对于那些刚接触生成式AI开发的新手来说,Amphion非常容易上手。

开源地址:https://github.com/open-mmlab/Amphion

论文地址:https://arxiv.org/abs/2312.09911

以下是Amphion包含的各种模型

文本到语音合成

Amphion内置的文本到语音合成模型,涵盖从传统到当前最先进的技术。例如,FastSpeech 2使用前馈式Transformer架构实现快速语音合成;

VITS融合了条件变分自编码器,可实现端到端的语音合成;Vall-E使用神经编解码器语言模型一键实现零资源的语音合成;NaturalSpeech 2利用潜在扩散模型合成高质量语音。

开发者可根据业务需求,选择使用不同的模型进行语音合成。

歌声转换

Amphion提供了提取说话人无关表示的各类基于内容的特征,例如,来自WeNet、Whisper和ContentVec的预训练语音特征。

同时实现了多种声学解码器架构,比如基于扩散模型、变压器和变分自编码器的方法。

此外,借助内置的神经语音编解码器合成声波输出,开发者可以灵活配置不同模块,进行不同歌声风格转换。

文本到音频生成

Amphion使用了主流的潜在扩散生成模型。该模型包含一个将频谱映射到潜空间的变分自动编码器,一个接受文本并输出条件的T5编码器,以及一个扩散网络生成最终音频。

用户只需给出音频描述文本,就可以生成语义一致的背景音效。

神经语音编解码器

Amphion提供了丰富的编解码器算法选项,涵盖主流的自动回归模型、流模型、对抗生成模型、扩散模型等。

例如,WaveNet使用膨胀卷积实现高质量语音合成;HiFi-GAN应用多尺度判别器实现高保真的语音重构等,可满足不同业务场景的需求。

性能评估模块

为了帮助开发者全面评估生成语音的质量和性能,Amphion提供了丰富的评估模块。

评估基频建模、能量建模、频谱失真、可懂度等语音维度,可帮助开发者简单直观地比较不同模型的性能。

开发团队表示,未来,会持续更新这个工具包,加入更多与语音相关的模型,打造成最好用的开源语音工具包之一。

本文素材来源Amphion论文,如有侵权请联系删除

相关推荐
小鸡吃米…几秒前
机器学习 - 高斯判别分析(Gaussian Discriminant Analysis)
人工智能·深度学习·机器学习
香芋Yu几秒前
【机器学习教程】第01章:机器学习概览
人工智能·机器学习
HySpark6 分钟前
关于语音智能技术实践与应用探索
人工智能·语音识别
AI应用开发实战派8 分钟前
AI人工智能中Bard的智能电子商务优化
人工智能·ai·bard
FL162386312913 分钟前
MMA综合格斗动作检测数据集VOC+YOLO格式1780张16类别
人工智能·yolo·机器学习
应用市场13 分钟前
深度学习图像超分辨率技术全面解析:从入门到精通
人工智能·深度学习
格林威19 分钟前
Baumer相机铸件气孔与缩松识别:提升铸造良品率的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·算法·安全·计算机视觉·堡盟相机·baumer相机
光羽隹衡21 分钟前
计算机视觉——Opencv(图像金字塔)
人工智能·opencv·计算机视觉
zhengfei61123 分钟前
人工智能驱动的暗网开源情报工具
人工智能·开源
余俊晖25 分钟前
多模态视觉语言模型:Molmo2训练数据、训练配方
人工智能·语言模型·自然语言处理