《数据结构》学习笔记

1.算法分析的两个主要任务:正确性(不变性 + 单调性) + 复杂度。

2.复杂度分析的主要方法:

  • 迭代:级数求和;
  • 递归:递归跟踪 + 递推方程
  • 猜测 + 验证

3.级数:

(1)算术级数:与末项平方同阶
T ( n ) = 1 + 2 + ⋯ + n = n ( n + 1 ) 2 = O ( n 2 ) T(n) = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} = O(n^2) \notag T(n)=1+2+⋯+n=2n(n+1)=O(n2)

(2)幂方级数:比幂次高出一阶
∑ k = 0 n k d ≈ ∫ 0 n x d + 1 d x = 1 d + 1 x d + 1 ∣ 0 n = 1 d + 1 n d + 1 = O ( n d + 1 ) \sum \limits _{k=0} ^ n k^d \approx \int _0 ^n x^{d+1} \text{d} x = \frac{1}{d+1} x^{d+1} \bigg|_0^n = \frac{1}{d+1} n^{d+1} = O(n^{d+1}) \notag k=0∑nkd≈∫0nxd+1dx=d+11xd+1 0n=d+11nd+1=O(nd+1)

例如:
T 2 ( n ) = 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = O ( n 3 ) T 3 ( n ) = 1 3 + 2 3 + ⋯ + n 3 = n 2 ( n + 1 ) 2 4 = O ( n 4 ) T 4 ( n ) = 1 4 + 2 4 + ⋯ + n 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) 30 = O ( n 5 ) \begin{aligned} & T_2(n) = 1^2 + 2 ^ 2 +\cdots + n^2 = \frac{n(n+1)(2n+1)}{6} = O(n^3) \\ & T_3(n) = 1^3 + 2 ^3 +\cdots + n^3 = \frac{n^2(n+1)^2}{4} = O(n^4) \\ & T_4(n) = 1^4 + 2^4 +\cdots + n^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} = O(n^5) \end{aligned}\notag T2(n)=12+22+⋯+n2=6n(n+1)(2n+1)=O(n3)T3(n)=13+23+⋯+n3=4n2(n+1)2=O(n4)T4(n)=14+24+⋯+n4=30n(n+1)(2n+1)(3n2+3n−1)=O(n5)

(3)几何级数:与末项同阶
T a ( n ) = a 0 + a 1 + ⋯ + a n = a n + 1 − 1 a − 1 = O ( a n ) T_a(n) = a^0 + a^1+\cdots+a^n = \frac{a^{n+1}-1}{a-1} = O(a^n) \notag Ta(n)=a0+a1+⋯+an=a−1an+1−1=O(an)

例如:
1 + 2 + 4 + ⋯ + 2 n = 2 n + 1 − 1 = O ( 2 n + 1 ) = O ( 2 n ) 1+2+4+\cdots+2^n = 2^{n+1}-1=O(2^{n+1})=O(2^n)\notag 1+2+4+⋯+2n=2n+1−1=O(2n+1)=O(2n)

(4)收敛级数:
1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 ( n − 1 ) × n = 1 − 1 n = O ( 1 ) 1 + 1 2 2 + ⋯ + 1 n 2 < 1 + 1 2 2 + ⋯ + = π 2 6 = O ( 1 ) 1 3 + 1 7 + 1 8 + 1 15 + 1 24 + 1 26 + 1 31 + 1 35 + ⋯ = 1 = O ( 1 ) \begin{aligned} & \frac{1}{1\times 2} + \frac{1}{2 \times 3} + \frac{1}{3\times4} +\cdots +\frac{1}{(n-1)\times n} = 1-\frac 1 n = O(1) \\ & 1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2} < 1 + \frac{1}{2^2} + \cdots + = \frac{\pi ^2}{6} = O(1) \\ & \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \frac{1}{26} + \frac{1}{31} + \frac{1}{35} + \cdots = 1 = O(1) \end{aligned} \notag 1×21+2×31+3×41+⋯+(n−1)×n1=1−n1=O(1)1+221+⋯+n21<1+221+⋯+=6π2=O(1)31+71+81+151+241+261+311+351+⋯=1=O(1)

(5)两个重要级数:

  • 调和级数:

h ( n ) = 1 + 1 2 + 1 3 + ⋯ + 1 n = Θ ( log ⁡ n ) \begin{aligned} & h(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \Theta(\log n) \end{aligned} \notag h(n)=1+21+31+⋯+n1=Θ(logn)

  • 对数级数:

log ⁡ 1 + log ⁡ 2 + log ⁡ 3 + ⋯ + log ⁡ n = log ⁡ ( n ! ) = Θ ( n log ⁡ n ) \log 1 + \log 2 +\log 3 + \cdots + \log n = \log (n!) = \Theta(n \log n) \notag log1+log2+log3+⋯+logn=log(n!)=Θ(nlogn)

4.一些循环的复杂度估计:

(1)循环体如下:

cpp 复制代码
for (int i = 1; i < n; i <<= 1)
    for (int j = 0; j < i; j++)
        O1_Operation(i, j);

其时间复杂度的计算如下:
几何级数: 1 + 2 + 4 + ⋯ + 2 ⌊ log ⁡ 2 ( n − 1 ) ⌋ = ∑ k = 0 ⌊ log ⁡ 2 ( n − 1 ) ⌋ 2 k ( let k = log ⁡ 2 i ) = 2 ⌈ log ⁡ 2 n ⌉ − 1 = O ( n ) \begin{aligned} \text{几何级数:} \\ & 1 + 2 + 4 + \cdots + 2^{\lfloor \log_2 (n-1) \rfloor} \\ = &\sum \limits _{k=0} ^ {\lfloor \log_2 (n-1) \rfloor} 2^k \quad (\text{let}\ k = \log_2 i) \\ = & 2^{\lceil \log _2 n \rceil} - 1 \\ = & O(n) \end{aligned} \notag 几何级数:===1+2+4+⋯+2⌊log2(n−1)⌋k=0∑⌊log2(n−1)⌋2k(let k=log2i)2⌈log2n⌉−1O(n)

(2)前置知识:数列 { n ⋅ 2 n } \{n\cdot 2^n\} {n⋅2n} 的前 n n n 项和: S n = ( n − 1 ) ⋅ 2 n + 1 + 2 S_n = (n-1)\cdot 2^{n+1}+2 Sn=(n−1)⋅2n+1+2

循环体如下:

cpp 复制代码
for (int i = 0; i <= n; i++)
    for (int j = 1; j < i; j += j)
        O1_Operation(i, j);

时间复杂度的计算如下:
几何级数: ∑ k = 0 n ⌈ log ⁡ 2 i ⌉ = O ( n log ⁡ n ) ( i = 0 , 1 , 2 , 3 ∼ 4 , 5 ∼ 8 , 9 ∼ 16 , ⋯   ) = 0 + 0 + 1 + 2 × 2 + 3 × 2 2 + 4 × 2 4 + ⋯ = ∑ k = 0 ⋯ log ⁡ n ( k × 2 k − 1 ) = O ( log ⁡ n × 2 log ⁡ n ) \begin{aligned} \text{几何级数:} & \sum \limits _{k=0}^n {\lceil \log _2 i \rceil} = O(n \log n) \\ & (i = 0, 1, 2, 3\sim4, 5\sim 8, 9 \sim 16, \cdots) \\ = &\ 0 + 0 + 1 + 2\times 2 + 3 \times 2^2 + 4 \times 2^4 +\cdots \\ = & \ \sum _{k=0\cdots \log n} (k \times 2^{k-1}) \\ = & \ O(\log n \times 2^{\log n}) \end{aligned} \notag 几何级数:===k=0∑n⌈log2i⌉=O(nlogn)(i=0,1,2,3∼4,5∼8,9∼16,⋯) 0+0+1+2×2+3×22+4×24+⋯ k=0⋯logn∑(k×2k−1) O(logn×2logn)

5.算法正确性的证明:(以起泡排序为例)

  • 不变性:经 k k k 轮扫描交换后,最大的 k k k 个元素必然就位;
  • 单调性:经 k k k 轮扫描交换后,问题规模缩减至 n − k n-k n−k;
  • 正确性:经至多 n n n 趟扫描后,算法必然终止,且能给出正确解答。

6.封底估算(Back-Of-The-Envelope Calculation):

(1)1 day = 24h x 60min x 60sec ≈ \approx ≈ 25 x 4000 = 10^5 sec

(2)10^9 sec ≈ \approx ≈ 30 year

7.最长公共子序列:

(1)递归版:

cpp 复制代码
unsigned int lcs(const char* A, int n, const char* B, int m)
{
    if (n < 1 || m < 1) return 0; // recursion base
    
    else if (A[n - 1] == B[m - 1]) // decrease-and-conquer
        return 1 + lcs(A, n - 1, B, m - 1);
    
    else // divide-and-conquer
        return max(lcs(A, n, B, m - 1), lcs(A, n - 1, B, m));
}

(2)迭代版:

cpp 复制代码
unsigned int lcs(const char* A, int n, const char* B, int m)
{
    if (n < m)
    {
        swap(A, B);
        swap(n, m); // make sure m <= n
    }
    
    unsigned int* lcs1 = new unsigned int[m + 1];
    unsigned int* lcs2 = new unsigned int[m + 1];
    
    memset(lcs1, 0x00, sizeof(unsigned int) * (m + 1));
    lcs2[0] = 0;
    
    for (int i = 0; i < n; swap(lcs1, lcs2), i++)
        for (int j = 0; j < m; j++)
            lcs2[j + 1] = (A[i] == B[j]) ? 1 + lcs1[j] : max(lcs2[j], lcs1[j + 1]);
    
    unsigned int res = lcs1[m];
    delete [] lcs1; delete [] lcs2;
    
    return res;
}

8.总和最大区段:

(1) O ( n 3 ) O(n^3) O(n3) 蛮力算法:

cpp 复制代码
int gs_BF(int A[], int n)
{
    int gs = A[0]; // current max
    
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++) // enumerate every segment
        {
            int s = 0;
            for (int k = i; k <= j; k++) s += A[k];
            if (gs < s) gs = s;
        }
    
    return gs;
}

(2) O ( n 2 ) O(n^2) O(n2) 递增策略:

cpp 复制代码
// 考查所有起点相同的区间,它们的总和之间具有相关性
int gs_IC(int A[], int n)
{
    int gs = A[0]; // current max
    
    for (int i = 0; i < n; i++)
    {
        int s = 0;
        for (int j = i; j < n; j++)
        {
            s += A[j];
            if (gs < s) gs = s;
        }
    }
    
    return gs;
}

(3) O ( n log ⁡ n ) O(n\log n) O(nlogn) 分治策略:

cpp 复制代码
// 将整个区间递归地分为三部分:前缀、后缀、跨越切分线的中间部分
int gs_DC(int A[], int lo, int hi) // 注意区间是左闭右开的:[lo, hi)
{
    if (hi - lo < 2) return A[lo]; // recursion base
    
    int mi = (lo + hi) >> 1;
    
    // 寻找跨越切分线左半边的gsL
    int gsL = A[mi - 1], sL = 0, i = mi;
    while (lo < i--)
    {
        sL += A[i];
        if (gsL < sL) gsL = sL;
    }
    
    // 寻找跨越切分线右半边的gsR
    int gsR = A[mi], sR = 0, j = mi - 1;
    while (++j < hi)
    {
        sR += A[j];
        if (gsR < sR) gsR = sR;
    }
    
    return max(gsL + gsR, max(gs_DC(A, lo, mi), gs_DC(A, mi, hi)));
}

(4) O ( n ) O(n) O(n) 减治策略:

cpp 复制代码
// 该策略基于这样一个结论:
// 记suffix(k) = A[k, hi), 其中k = max{lo<=i<hi | sum[i, hi)<=0},
// 则GS(lo, hi) = A[i, j)要么是其真后缀(k <= i < j = hi),要么与之无交(j <= k)
int gs_LS(int A[], int n) // Linear Scan: O(n)
{
    int gs = A[0], s = 0, i = n;
    while (0 < i--)
    {
        s += A[i];
        if (gs < s) gs = s;
        if (s <= 0) s = 0; // 剪除负和后缀
    }
    
    return gs;
}
相关推荐
薄荷故人_9 分钟前
从零开始的C++之旅——红黑树及其实现
数据结构·c++
biter008811 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
努力学习编程的伍大侠21 分钟前
基础排序算法
数据结构·c++·算法
车轮滚滚__22 分钟前
uniapp对接unipush 1.0 ios/android
笔记
XiaoLeisj1 小时前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Code哈哈笑1 小时前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
Jackey_Song_Odd2 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
乐之者v2 小时前
leetCode43.字符串相乘
java·数据结构·算法
QQ同步助手2 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
流浪的小新2 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习