AIGC快速构建图像分类器

本文主要说明在win10笔记本上如何构建pipenv虚拟环境,然后利用AIGC工具快速构建图像分类器,最后利用pyinstaller打包生成exe可执行文件,以图文相结合的方式详细说明,供大家参考。

1、安装pipenv虚拟环境管理工具

pip install pipenv

2、在某目录下创建一个虚拟环境

进入项目目录(比如D:\devCode\d2l-zh\pytorch\learning-d2l\pyqt_img_cls),然后在地址栏输入cmd,进入Windows命令行中,

运行pipenv install命令

两点需要说明:

(1)python使用的版本:默认的python版本

(2)虚拟环境位置:存放虚拟环境的目录默认指定是C:\Users\xxx.virtualenvs目录下,可通过添加系统环境变量来调整存放目录,小编把存放路径改为D:\devCode\pipenv,所以可以看到上图中的路径为虚拟环境位置:D:\devCode\pipenv\Screen-amTXFjUr。

修改虚拟环境存放位置,需要在win系统环境变量下,增加WORKON_HOME和对应的路径。

运行完pipenv install命令后,可以在当前目录下看到已经创建 Pipfile和Pipfile.lock两个文件。

3、修改pipenv的镜像源

(1)修改Pipfile文件

将url = "pypi.org/simple"改为ur... = "pypi.tuna.tsinghua.edu.cn/simple" (2)修改Pipfile.lock文件

将Pipfile.lock中的"url": "pypi.org/simple",改为 "url": "pypi.tuna.tsinghua.edu.cn/simple",

4、运行pipenv shell激活虚拟环境安装依赖包

(1)安装pyqt5

pipenv install pyqt5

(2)安装pyqt5-tools

pipenv install pyqt5-tools

(3)安装pytorch

pipenv install torch==1.13.1

(4)安装torchvision

pipenv install torchvision==0.14.1

5、在pycharm中给项目配置安装好的pipenv虚拟环境

选择File-->setting

6、利用AIGC工具生成一个简单的图像分离器应用程序

最终的效果如下,里面主要用了resnet18分类模型,用pyqt5作为GUI界面进行交互 整体代码如下:

python 复制代码
import sys
from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLabel, QVBoxLayout, QFileDialog
from PyQt5.QtGui import QPixmap
from PyQt5.QtCore import Qt
from torchvision import models, transforms
from PIL import Image
import torch
from urllib import request
import os


class ImageClassifierApp(QWidget):
    def __init__(self):
        super().__init__()

        self.init_ui()
        self.download_resnet18_model()

    def init_ui(self):
        self.setWindowTitle('Image Classifier App')

        self.image_label = QLabel(self)
        self.image_label.setAlignment(Qt.AlignCenter)
        self.result_label = QLabel(self)
        self.result_label.setAlignment(Qt.AlignCenter)

        self.load_image_button = QPushButton('Load Image', self)
        self.load_image_button.clicked.connect(self.load_image)
        self.classify_button = QPushButton('Classify Image', self)
        self.classify_button.clicked.connect(self.classify_image)

        layout = QVBoxLayout()
        layout.addWidget(self.load_image_button)
        layout.addWidget(self.image_label)
        layout.addWidget(self.classify_button)
        layout.addWidget(self.result_label)

        self.setLayout(layout)

    def load_image(self):
        file_dialog = QFileDialog()
        file_path, _ = file_dialog.getOpenFileName(self, 'Open Image', '', 'Images (*.png *.jpg *.jpeg)')
        if file_path:
            pixmap = QPixmap(file_path)
            self.image_label.setPixmap(pixmap)
            self.image_label.show()
            self.image_path = file_path

    def download_resnet18_model(self):
        model_path = "resnet18.pth"
        if not os.path.exists(model_path):
            print("Downloading ResNet18 model...")
            url = "https://download.pytorch.org/models/resnet18-5c106cde.pth"
            request.urlretrieve(url, model_path)

    def classify_image(self):
        if hasattr(self, 'image_path'):
            image = Image.open(self.image_path)
            model_path = "resnet18.pth"
            resnet18 = models.resnet18(weights=None)
            resnet18.load_state_dict(torch.load(model_path))
            transform = transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            ])
            input_tensor = transform(image)
            input_batch = input_tensor.unsqueeze(0)
            resnet18.eval()
            with torch.no_grad():
                output = resnet18(input_batch)

            _, predicted_idx = torch.max(output, 1)
            class_names = self.get_imagenet_classes()
            result = f"Predicted Class: {class_names[predicted_idx.item()]}"
            self.result_label.setText(result)
        else:
            self.result_label.setText("Please load an image first.")

    def get_imagenet_classes(self):
        classes_path = "imagenet_classes.txt"
        if not os.path.exists(classes_path):
            print("Downloading ImageNet classes file...")
            url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
            request.urlretrieve(url, classes_path)
        with open(classes_path, "r") as file:
            classes = [line.strip() for line in file.readlines()]
        return classes


if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = ImageClassifierApp()
    window.show()
    sys.exit(app.exec_())

7、打包exe

安装打包工具

运行pyinstaller -F img_cls_pyqt.py命令,进行打包

打包完成后,可以在当前目录下面生成一个dist文件夹,然后里面有一个exe文件

然后把imagenet_classes.txt和resnet18.pth两个依赖文件拷贝到dist目录,双击exe文件运行,然后选择一张图片,点击分类效果如下。

本文完毕,希望对您有帮助!

相关推荐
机 _ 长1 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
PaperRed ai写作降重助手2 小时前
智能写作ai论文生成软件推荐
人工智能·aigc·ai写作·智能降重·paperred
龙山云仓2 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
IT·小灰灰2 小时前
30行PHP,利用硅基流动API,网页客服瞬间上线
开发语言·人工智能·aigc·php
jay神3 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
songyuc4 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
名为沙丁鱼的猫7294 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
小Tomkk6 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
龙腾亚太6 小时前
航空零部件加工变形难题破解:数字孪生 + 深度学习的精度控制实战
人工智能·深度学习·数字孪生·ai工程师·ai证书·转型ai