Elasticsearch:聊天机器人教程(一)

在本教程中,你将构建一个大型语言模型 (LLM) 聊天机器人,该机器人使用称为检索增强生成 (RAG) 的模式。

使用 RAG 构建的聊天机器人可以克服 ChatGPT 等通用会话模型所具有的一些限制。 特别是,他们能够讨论和回答以下问题:

  • 你的组织私有的信息
  • 不属于训练数据集的事件,或者 LLM 完成训练后发生的事件

作为一个额外的好处,RAG 可以帮助 LLM 以事实为 "基础",使他们不太可能做出回应或 "产生幻觉"。

实现这一目标的秘诀是使用两步过程从 LLM 获得答案:

  • 首先在检索阶段,针对用户的查询搜索一个或多个数据源。 检索在此搜索中找到的相关文档。 为此,使用 Elasticsearch 索引是一个很好的选择,使你能够在关键字、密集和稀疏向量搜索方法,甚至它们的混合组合之间进行选择。
  • 然后在生成阶段,用户的提示被扩展为包括第一阶段检索到的文档,并添加了对 LLM 的指令,以在检索到的信息中找到用户问题的答案。 扩展提示(包括问题的添加上下文)将代替原始查询发送到 LLM。

教程结构

本教程分为两个主要部分。

  1. 在第一部分中,您将学习如何运行 Chatbot RAG 应用程序示例,这是一个具有 Python 后端和 React 前端的完整应用程序。
  2. 一旦你启动并运行了示例应用程序,本教程的第二部分将解释 RAG 实现的不同组件,以便你可以根据自己的需要调整示例代码。

要求

要学习本教程,你需要安装以下组件:

1)Elasticsearch 及 Kibana

有关安装说明,请参阅如下的文章:

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

在下面的展示中,我将使用 Elastic Stack 8.11 来进行展示。

2)OpenAI 的 API 密钥 。 实际上,你可以使用你喜欢的任何其他 LLM,只要它受到 Langchain 项目的支持即可。

3)Python 解释器。 确保它是最新版本,例如 Python 3.8 或更高版本。

4)Node.jsYarn

本教程重点介绍 RAG 主题。 为了能够修改示例应用程序,你将需要以下技术的基本知识:

  • 使用 Flask 进行 Python 后端开发。
  • 使用 React 进行 TypeScript 前端开发。

整个项目的完整代码在如下地址可以进行下载:

bash 复制代码
1.  git clone https://github.com/liu-xiao-guo/elasticsearch-labs
2.  cd elasticsearch-labs/example-apps/chatbot-rag-app

聊天机器人示例位于 example-apps/chatbot-rag-app 子目录中。

markdown 复制代码
1.  $ pwd
2.  /Users/liuxg/python/elasticsearch-labs
3.  $ ls
4.  CONTRIBUTING.md         bin                     supporting-blog-content
5.  LICENSE                 datasets                test
6.  Makefile                example-apps
7.  README.md               notebooks
8.  $ cd example-apps
9.  $ ls
10.  README.md                 openai-embeddings         workplace-search
11.  chatbot-rag-app           relevance-workbench
12.  internal-knowledge-search search-tutorial
13.  $ cd chatbot-rag-app/
14.  $ ls
15.  Dockerfile       api              data             frontend         requirements.txt
16.  README.md        app-demo.gif     env.example      requirements.in

Python 后端

在本节中,我们将设置和配置项目的后端部分。

安装 Python 依赖项

为了遵循 Python 最佳实践,你现在将创建一个虚拟环境,这是专用于该项目的私有 Python 安装,可以在其中安装所有依赖项。 使用以下命令执行此操作:

python3 -m venv .venv
markdown 复制代码
1.  $ pwd
2.  /Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app
3.  $ python3 -m venv .venv

此命令在 .venv (dot-venv) 目录中创建 Python 虚拟环境。 你可以将此命令中的 .venv 替换为你喜欢的任何其他名称。 请注意,在某些 Python 安装中,你可能需要使用 python 而不是 python3 来调用 Python 解释器。

下一步是激活虚拟环境,这是使该虚拟环境成为你所在终端会话的活动 Python 环境的一种方法。如果你使用的是基于 UNIX 的操作系统(例如 Linux 或 macOS),请激活 虚拟环境如下:

bash 复制代码
source .venv/bin/activate
markdown 复制代码
1.  $ pwd
2.  /Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app
3.  $ python3 -m venv .venv
4.  $ source .venv/bin/activate
5.  (.venv) $ 

如果你在 Microsoft Windows 计算机上的 WSL 环境中工作,上述激活命令也适用。 但如果你使用的是 Windows 命令提示符或 PowerShell,激活命令会有所不同:

.venv\Scripts\activate

激活虚拟环境后,命令行提示符将更改为显示环境名称:

ruby 复制代码
(.venv) $ _

配置 Python 环境的最后一步是安装入门应用程序所需的一些包。 确保上一步中已激活虚拟环境,然后运行以下命令安装这些依赖项:

pip install -r requirements.txt

编写配置文件

在上一节中下载的代码的主目录中有一个名为 env.example 的文件。 该文件包含应用程序支持的所有配置变量。

复制该文件,并将其命名为 .env:

bash 复制代码
cp env.example .env
markdown 复制代码
1.  (.venv) $ ls -al
2.  total 920
3.  drwxr-xr-x  14 liuxg  staff     448 Jan 15 09:25 .
4.  drwxr-xr-x   9 liuxg  staff     288 Jan 15 09:21 ..
5.  -rw-r--r--   1 liuxg  staff      55 Jan 15 09:21 .flaskenv
6.  -rw-r--r--   1 liuxg  staff      82 Jan 15 09:21 .gitignore
7.  drwxr-xr-x   6 liuxg  staff     192 Jan 15 09:25 .venv
8.  -rw-r--r--   1 liuxg  staff     807 Jan 15 09:21 Dockerfile
9.  -rw-r--r--   1 liuxg  staff    6085 Jan 15 09:21 README.md
10.  drwxr-xr-x   7 liuxg  staff     224 Jan 15 09:21 api
11.  -rw-r--r--   1 liuxg  staff  430277 Jan 15 09:21 app-demo.gif
12.  drwxr-xr-x   4 liuxg  staff     128 Jan 15 09:21 data
13.  -rw-r--r--   1 liuxg  staff     860 Jan 15 09:21 env.example
14.  drwxr-xr-x   9 liuxg  staff     288 Jan 15 09:21 frontend
15.  -rw-r--r--   1 liuxg  staff     315 Jan 15 09:21 requirements.in
16.  -rw-r--r--   1 liuxg  staff    5259 Jan 15 09:21 requirements.txt
17.  (.venv) $ cp env.example .env
18.  (.venv) $ ls .env
19.  .env

如果您在 Windows 上学习本教程,请在上面的命令中使用 copy 而不是 cp。

在你喜欢的文本编辑器中打开 .env 以查看应用程序配置,并查看以下小节以获取有关如何配置应用程序的指导。

Elasticsearch 设置

我们在 .env 中设置如下的变量:

.env

ini 复制代码
1.  ELASTICSEARCH_URL=https://elastic:yarOjyX5CLqTsKVE3v*d@192.168.0.3:9200
2.  ES_INDEX=workplace-app-docs
3.  ES_INDEX_CHAT_HISTORY=workplace-app-docs-chat-history
4.  LLM_TYPE=openai
5.  OPENAI_API_KEY=YourOpenAiKey

在上面,你必须根据自己的 Elasticsearch 安装修改上面的 ELASTICSEARCH_URL 值。你还需要修改上面的 OPENAI_API_KEY 值。你需要在 OpenAI 的网站中申请开发者 key。你可以在地址 platform.openai.com/api-keys 进行申请。

为了能够让 Python 连接到 Elasticsearch,我们必须把 Elasticsearch 的证书拷贝到当前的目录下:

bash 复制代码
1.  (.venv) $ pwd
2.  /Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app/api
3.  (.venv) $ cp ~/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt .
4.  (.venv) $ ls http_ca.crt 
5.  http_ca.crt

另外,在 github 上的代码是为在 docker 的环境下运行二准备的,我们必须修改其中的一个部分以使得它正常运行:

api/elasticsearch_client.py

ini 复制代码
1.  if ELASTICSEARCH_URL:
2.      elasticsearch_client = Elasticsearch(
3.          hosts=[ELASTICSEARCH_URL], 
4.          ca_certs = ./http_ca.crt, 
5.          verify_certs = True
6.      )

data/index_data.py

ini 复制代码
1.  if ELASTICSEARCH_URL:
2.      elasticsearch_client = Elasticsearch(
3.          hosts=[ELASTICSEARCH_URL], 
4.          ca_certs = "./http_ca.crt", 
5.          verify_certs = True
6.      )

写入示例数据集

该应用程序附带一个示例数据集,存储在 data/data.json 文件中。 请随意在文本编辑器中打开此文件,以熟悉其中包含的文档。

使用以下命令将数据集导入应用程序:

lua 复制代码
flask create-index
markdown 复制代码
1.  (.venv) $ pwd
2.  /Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app
3.  (.venv) $ flask create-index
4.  ".elser_model_2" model is available
5.  Loading data from $/Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app/api/../data/data.json
6.  Loaded 15 documents
7.  Split 15 documents into 26 chunks
8.  Creating Elasticsearch sparse vector store in Elastic Cloud: 

等上面的命令运行完毕后,我们到 Kibana 中进行查看:

启动后端

完成上述所有步骤后,你应该能够使用以下命令启动 Python 后端:

arduino 复制代码
flask run

保持后端运行并打开一个新的终端会话以继续本教程的其余部分。

React 前端

在本部分中,你将启动聊天机器人的前端。

安装依赖项

前端位于项目的 frontend 子目录中,因此请继续更改为:

bash 复制代码
cd frontend
bash 复制代码
1.  $ pwd
2.  /Users/liuxg/python/elasticsearch-labs/example-apps/chatbot-rag-app
3.  $ cd frontend/

运行 yarn 命令安装所有前端依赖项:

yarn

运行前端

使用以下命令启动前端:

sql 复制代码
yarn start

几秒钟后,你的浏览器应该打开该应用程序。

使用应用程序

现在,你可以通过单击 common questions 中的一个或输入你自己的问题来向聊天机器人询问任何问题。

聊天机器人的响应将来自导入的数据集,每个响应将引用检索到的文档以及使用特定文档的文档。

一定要尝试提出后续问题,这些问题应该 "记住" 会话之前讨论的内容。

本教程的其余部分将讨论该应用程序的一些实现细节,以便你可以根据需要进行更改、试验和调整代码。请关注我们的下一个部分!

相关推荐
SafePloy安策1 小时前
ES信息防泄漏:策略与实践
大数据·elasticsearch·开源
涔溪1 小时前
Ecmascript(ES)标准
前端·elasticsearch·ecmascript
csdn5659738504 小时前
Elasticsearch 重建索引 数据迁移
elasticsearch·数据迁移·重建索引
天幕繁星5 小时前
docker desktop es windows解决vm.max_map_count [65530] is too low 问题
windows·elasticsearch·docker·docker desktop
Elastic 中国社区官方博客5 小时前
Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
m1chiru5 小时前
Elasticsearch 实战应用:高效搜索与数据分析
elasticsearch
飞翔的佩奇5 小时前
ElasticSearch:使用dsl语句同时查询出最近2小时、最近1天、最近7天、最近30天的数量
大数据·elasticsearch·搜索引擎·dsl
Elastic 中国社区官方博客12 小时前
Elasticsearch 和 Kibana 8.16:Kibana 获得上下文和 BBQ 速度并节省开支!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一个处女座的程序猿12 小时前
LLMs之VDB:Elasticsearch的简介、安装和使用方法、案例应用之详细攻略
大数据·elasticsearch·搜索引擎
未 顾20 小时前
day12:版本控制器
大数据·elasticsearch·搜索引擎