使用 TensorFlow 执行逻辑回归

创建一个包含用于定义逻辑回归的 Python 代码的 Jupyter Notebook,然后使用 TensorFlow (tf.keras) 实现它

在本教程中,了解如何创建包含用于定义逻辑回归的 Python 代码的 Jupyter Notebook,然后使用 TensorFlow (tf.keras) 实现它。Notebook 在 IBM Cloud Pak® for Data as a Service on IBM Cloud® 上运行。IBM Cloud Pak for Data 平台提供了额外的支持,例如与多个数据源的集成、内置分析、Jupyter Notebook 和机器学习。它还通过跨多个计算资源分配进程来提供可扩展性。您可以选择在 Python、Scala 和 R 中创建资产,并使用已安装在 IBM Cloud Pak for Data as a Service 平台上的开源框架(例如 TensorFlow)。

线性回归和逻辑回归的区别

虽然线性回归非常适合估计连续值(例如,估计房价或产品销售),但它并不是预测观察到的数据点所属类别的最佳工具。若要提供分类估计值,需要一些有关该数据点最有可能的类的指导。为此,您将使用逻辑回归。

线性回归

线性回归找到一个函数,该函数将连续因变量 与某些预测变量(例如,自变量或 )相关联。简单线性回归假定以下形式的函数:y``x1``x2

复制代码
y = w0 + w1 x x1 + w2 x x2 + ...

显示更多

它查找 、 和 的值。该项是截距 项或常量项 (如下公式所示):w0``w1``w2``w0``b

复制代码
 Y = W X + b

显示更多

逻辑回归

逻辑回归是线性回归的一种变体,当观测到的因变量 时很有用。它生成一个公式,用于预测类标签作为自变量函数的概率。y

尽管名称为逻辑回归,但它实际上是一种概率分类模型。逻辑回归通过采用线性回归并使用以下函数将数值估计值转换为概率来拟合特殊的 S 形曲线:

复制代码
 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑓𝑎𝐶𝑙𝑎𝑠𝑠=𝑡ℎ𝑒𝑡𝑎(𝑦)=𝑓𝑟𝑎𝑐𝑒𝑦1+𝑒𝑦=𝑒𝑥𝑝(𝑦)/(1+𝑒𝑥𝑝(𝑦))=𝑝

显示更多

这将产生介于 0(接近减去无穷大)和 1(接近加无穷大)之间的 p 值。现在,这成为一种特殊类型的非线性回归。y``y

在这个等式中,是回归结果(变量之和乘以系数加权),是指数函数,是y``exp``theta(y)物流功能,也称为逻辑曲线。它是一种常见的"S"形(S形曲线),最初是为模拟人口增长而开发的。

您可能之前在另一个配置中看到过此函数:

复制代码
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑓𝑎𝐶𝑙𝑎𝑠𝑠=𝑡ℎ𝑒𝑡𝑎(𝑦)=𝑓𝑟𝑎𝑐11+𝑒−𝑦

显示更多

因此,逻辑回归通过逻辑/sigmoid 函数传递输入,但随后将结果视为概率。

先决条件

遵循本教程需要满足以下先决条件:

预计时间

完成本教程大约需要 60 分钟。

步骤

  1. 创建 IBM Cloud 帐户并访问 IBM Cloud Pak for Data as a Service。

  2. 创建一个新项目。

  3. 将 Watson Machine Learning Service 与项目相关联。

  4. 将笔记本添加到项目中。

  5. 运行笔记本。

步骤 1。创建 IBM Cloud 帐户

  1. 登录到您的 IBM Cloud 帐户

  2. 搜索 Watson Studio。

  3. 通过选择区域和定价计划来创建服务。

  4. 单击创建

第2步。创建新项目

  1. 单击 Get started 以启动 Watson Studio 服务。

  2. 单击**"创建**项目",然后创建一个空项目。

  3. 为项目命名,并添加存储服务。

  4. 单击创建。创建项目后,系统会将您定向到项目仪表板。

第 3 步。将 Watson Machine Learning Service 与项目关联

  1. 单击**"设置**"选项卡。

  2. 向下滚动到关联的 服务,然后单击添加服务

  3. 在下拉菜单中选择 Watson

  4. 选择**"机器学习**"。

  5. 单击关联服务

第 4 步。将笔记本添加到项目

  1. 单击"添加到项目 ",然后单击"笔记本",将 Jupyter Notebook 添加到项目中。

  2. 选择**"从 URL"**,然后在"笔记本 URL"字段中输入以下 URL。

    复制代码
     https://github.com/IBM/dl-learning-path-assets/tree/main/fundamentals-of-deeplearning/notebooks/Logistic_Regression_with_TensorFlow.ipynb

    显示更多

  3. 为笔记本命名,然后单击**"创建**"。

第 5 步。运行笔记本

加载笔记本后,单击"单元格 ",然后选择"全部运行"以运行 笔记本。

通读笔记本

笔记本包含所有详细信息。花一些时间浏览笔记本的各个部分,以获得笔记本的概述。笔记本由文本(Markdown 或标题)单元格和代码单元格组成。Markdown 单元格提供有关代码设计用途的注释。

您可以通过突出显示每个单元格来单独运行单元格,然后单击笔记本顶部的"运行"或使用键盘快捷键运行 单元格(Shift + Enter ,但这可能因平台而异)。单元运行时,单元格左侧会出现一个星号 ()。当该单元格完成运行时,将显示一个序列号(例如,)。[*]``[17]

Notebook 提供了一个简单的逻辑函数示例,以帮助您了解 TensorFlow 背后的基本机制。

总结

在本教程中,您学习了逻辑回归的基础知识,以及如何使用 TensorFlow 实现机器学习算法。您学习了如何在 IBM Cloud Pak for Data as a Service 上使用 Watson Studio 运行 Jupyter Notebook,以及如何在 IBM Cloud Pak for Data as a Service 平台中使用开源框架。

相关推荐
newxtc4 分钟前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen5 分钟前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室1 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖2 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树2 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白3 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场3 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链4 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu4 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域4 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源