深度学习的基本概念汇总

这里小小总结一下看论文时常见到的名词,不用再一个个搜索啦!!!

1.batch size

batch size是指在训练集中取的样本数,batch的size设置的不能太大也不能太小,因此实际工程中最常用的就是mini-batch,一般size设置为几十或者几百。 对于二阶优化算法,减小batch换来的收敛速度提升远不如引入大量噪声导致的性能下降,因此在使用二阶优化算法时,往往要采用大batch哦。此时往往batch设置成几千甚至一两万才能发挥出最佳性能

2.channel

channel 定义:The dimensionality of the output space, i.e. the number of output channels (filters) in the convolution. ------mxnet (一般channels的含义是,每个卷积层中卷积核的数量

3.Conv1d,Conv2d,Conv3d

Conv1d即向一个维度进行卷积,常常用于自然语言处理

Conv2d即向两个维度进行卷积,在计算机视觉上,如手写数字识别,输入一张长*宽的手写数字图片

Conv3d即向三个维度进行卷积,在某些图像的处理上会更加高效,例如一些医学图像的分割有时会有更好的结果

4.Zero Padding(零填充)

Zero_padding 被广泛使用在卷积层中,因为图像在使用过滤器(卷积核)卷积后往往图像会缩小降维,丢失一些信息,为保持输入和输出的相同空间维度,故在水平轴和垂直轴的开始和结束处都添加了0来进行填充

5.Rescaling(区间缩放)

常见的区间缩放为 Min-Max Rescaling,对数据进行线性变换,将特征值映射将特征值映射到区间[0,1]中

6.Standardization(标准化)

标准化即为概率论与数理统计中常见的Z-score标准化。在特征值的均值(mean)和标准差(standard deviation)的基础上计算得出。标准化是依照特征矩阵的列处理数据,其通过求Z-score的方法

7.Normalization(归一化)

归一化是将每个样本缩放为单位范数(每个样本的范数为1)。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为"单位向量"

相关推荐
KG_LLM图谱增强大模型9 小时前
知识图谱+大模型“驱动的生物制药企业下一代主数据管理:Neo4j知识图谱与GraphRAG及GenAI的深度整合
人工智能·大模型·知识图谱
DisonTangor9 小时前
【DeepSeek拥抱开源】通过可扩展查找实现的条件记忆:大型语言模型稀疏性的新维度
人工智能·语言模型·自然语言处理
lkbhua莱克瓦249 小时前
稠密、稀疏与MoE:大模型时代的三重架构革命
人工智能·深度学习·机器学习·ai·架构
反向跟单策略9 小时前
期货反向跟单-贵金属牛市中的反向跟单密码
大数据·人工智能·学习·数据分析·区块链
K姐研究社9 小时前
实测百度文库AI PPT制作,一键排版美化生成专业PPT
人工智能·百度·powerpoint
万邦科技Lafite9 小时前
阿里巴巴商品详情API返回值:电商精准营销的关键
大数据·数据库·人工智能·电商开放平台
TMT星球9 小时前
康迪科技携核心电动产品亮相AIMExpo,渠道拓展再提速
人工智能·科技
kingmax542120089 小时前
NOAI和IOAI竞赛学习路径
人工智能·学习·青少年编程
说私域9 小时前
基于AI智能名片链动2+1模式服务预约小程序的旅拍消费需求激发路径研究
大数据·人工智能·小程序
一个会的不多的人9 小时前
人工智能基础篇:概念性名词浅谈(第二十六讲)
人工智能·制造·量子计算·数字化转型