问答机器人prompt

def build_prompt(prompt_template, **kwargs):

'''将 Prompt 模板赋值'''

prompt = prompt_template

for k, v in kwargs.items():

if isinstance(v, str):

val = v

elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):

val = '\n'.join(v)

else:

val = str(v)

prompt = prompt.replace(f"{k.upper()} ", val)

return prompt

prompt_template = """

你是一个问答机器人。

你的任务是根据下述给定的已知信息回答用户问题。

确保你的回复完全依据下述已知信息。不要编造答案。

如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
INFO

用户问:
QUERY

请用中文回答用户问题。

"""

import chromadb

from chromadb.config import Settings

class MyVectorDBConnector:

def init (self, collection_name, embedding_fn):

chroma_client = chromadb.Client(Settings(allow_reset=True))

复制代码
    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

class RAG_Bot:

def init (self, vector_db, llm_api, n_results=2):

self.vector_db = vector_db

self.llm_api = llm_api

self.n_results = n_results

复制代码
def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query, self.n_results)

    # 2. 构建 Prompt
    prompt = build_prompt(
        prompt_template, info=search_results['documents'][0], query=user_query)

    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

创建一个RAG机器人

bot = RAG_Bot(

vector_db,

llm_api=get_completion

)

user_query = "llama 2有对话版吗?"

response = bot.chat(user_query)

print(response)

相关推荐
筱昕~呀10 小时前
“烷”域天观——甲烷监测系统
人工智能·python·深度学习·豆包
mahtengdbb110 小时前
YOLO11-seg-ASF-DySample:人脸检测识别新突破,提升检测精度与效率
python
测试老哥10 小时前
接口测试:加密和签名
自动化测试·软件测试·python·功能测试·测试工具·测试用例·接口测试
今天又得骑车了10 小时前
Python 3.12 内置函数全图鉴:71 个“官方外挂”详解
python
CCPC不拿奖不改名10 小时前
大语言模型的基础:大语言模型基础认知
人工智能·python·学习·语言模型·自然语言处理·面向对象·智能体
夏沫mds10 小时前
基于 Flask 与Vue 3 及协同过滤算法的智能电影推荐系统
vue.js·python·flask·协同过滤
子午10 小时前
【2026原创】鱼类识别系统~Python+深度学习+CNN卷积神经网络算法+模型训练+图像识别
图像处理·python·深度学习·cnn
地理探险家10 小时前
【YOLOv8实战】15组衣物类深度学习数据集分享|附加载+标签管理代码
人工智能·python·深度学习·yolo·模型训练·电商视觉
大学生毕业题目10 小时前
毕业项目推荐:103-基于yolov8/yolov5/yolo11的皮肤癌检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·皮肤癌检测
ai_top_trends10 小时前
AI 生成 PPT 哪个好用?2026 年主流工具实测对比
人工智能·python