问答机器人prompt

def build_prompt(prompt_template, **kwargs):

'''将 Prompt 模板赋值'''

prompt = prompt_template

for k, v in kwargs.items():

if isinstance(v, str):

val = v

elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):

val = '\n'.join(v)

else:

val = str(v)

prompt = prompt.replace(f"{k.upper()} ", val)

return prompt

prompt_template = """

你是一个问答机器人。

你的任务是根据下述给定的已知信息回答用户问题。

确保你的回复完全依据下述已知信息。不要编造答案。

如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
INFO

用户问:
QUERY

请用中文回答用户问题。

"""

import chromadb

from chromadb.config import Settings

class MyVectorDBConnector:

def init (self, collection_name, embedding_fn):

chroma_client = chromadb.Client(Settings(allow_reset=True))

复制代码
    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

class RAG_Bot:

def init (self, vector_db, llm_api, n_results=2):

self.vector_db = vector_db

self.llm_api = llm_api

self.n_results = n_results

复制代码
def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query, self.n_results)

    # 2. 构建 Prompt
    prompt = build_prompt(
        prompt_template, info=search_results['documents'][0], query=user_query)

    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

创建一个RAG机器人

bot = RAG_Bot(

vector_db,

llm_api=get_completion

)

user_query = "llama 2有对话版吗?"

response = bot.chat(user_query)

print(response)

相关推荐
10岁的博客10 分钟前
PyTorch快速搭建CV模型实战
人工智能·pytorch·python
WWZZ202531 分钟前
快速上手大模型:深度学习3(实践:线性神经网络Softmax)
人工智能·深度学习·神经网络·机器人·大模型·slam·具身感知
寒秋丶35 分钟前
AutoGen多智能体协作、人机交互与终止条件
人工智能·python·microsoft·ai·人机交互·ai编程·ai写作
Turnsole_y43 分钟前
pytest与Selenium结合使用指南
开发语言·python
AI量化投资实验室2 小时前
年化398%,回撤11%,夏普比5,免费订阅,5积分可查看参数|多智能体的架构设计|akshare的期货MCP代码
人工智能·python
夫唯不争,故无尤也2 小时前
AI调度框架全解析:从通用到LLM专用
python·大模型·调用框架
wudl55663 小时前
Python 虚拟环境和包管理
数据库·python·sqlite
Geoking.4 小时前
PyTorch torch.unique() 基础与实战
人工智能·pytorch·python
俊俊谢4 小时前
【第一章】金融数据的获取——金融量化学习入门笔记
笔记·python·学习·金融·量化·akshare
闲人编程5 小时前
现代Python开发环境搭建(VSCode + Dev Containers)
开发语言·vscode·python·容器·dev·codecapsule