问答机器人prompt

def build_prompt(prompt_template, **kwargs):

'''将 Prompt 模板赋值'''

prompt = prompt_template

for k, v in kwargs.items():

if isinstance(v, str):

val = v

elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):

val = '\n'.join(v)

else:

val = str(v)

prompt = prompt.replace(f"{k.upper()} ", val)

return prompt

prompt_template = """

你是一个问答机器人。

你的任务是根据下述给定的已知信息回答用户问题。

确保你的回复完全依据下述已知信息。不要编造答案。

如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
INFO

用户问:
QUERY

请用中文回答用户问题。

"""

import chromadb

from chromadb.config import Settings

class MyVectorDBConnector:

def init (self, collection_name, embedding_fn):

chroma_client = chromadb.Client(Settings(allow_reset=True))

复制代码
    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

class RAG_Bot:

def init (self, vector_db, llm_api, n_results=2):

self.vector_db = vector_db

self.llm_api = llm_api

self.n_results = n_results

复制代码
def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query, self.n_results)

    # 2. 构建 Prompt
    prompt = build_prompt(
        prompt_template, info=search_results['documents'][0], query=user_query)

    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

创建一个RAG机器人

bot = RAG_Bot(

vector_db,

llm_api=get_completion

)

user_query = "llama 2有对话版吗?"

response = bot.chat(user_query)

print(response)

相关推荐
小白—人工智能14 分钟前
数据分析 —— 数据预处理
python·数据挖掘·数据分析
若叶时代16 分钟前
数据分析_Python
人工智能·python·数据分析
英英_26 分钟前
python 爬虫框架介绍
开发语言·爬虫·python
大模型铲屎官2 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
yunvwugua__2 小时前
Python训练营打卡 Day27
开发语言·python
Stara05113 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
那雨倾城4 小时前
使用 OpenCV 将图像中标记特定颜色区域
人工智能·python·opencv·计算机视觉·视觉检测
LuckyTHP6 小时前
java 使用zxing生成条形码(可自定义文字位置、边框样式)
java·开发语言·python
mahuifa8 小时前
(7)python开发经验
python·qt·pyside6·开发经验
学地理的小胖砸9 小时前
【Python 操作 MySQL 数据库】
数据库·python·mysql