问答机器人prompt

def build_prompt(prompt_template, **kwargs):

'''将 Prompt 模板赋值'''

prompt = prompt_template

for k, v in kwargs.items():

if isinstance(v, str):

val = v

elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):

val = '\n'.join(v)

else:

val = str(v)

prompt = prompt.replace(f"{k.upper()} ", val)

return prompt

prompt_template = """

你是一个问答机器人。

你的任务是根据下述给定的已知信息回答用户问题。

确保你的回复完全依据下述已知信息。不要编造答案。

如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
INFO

用户问:
QUERY

请用中文回答用户问题。

"""

import chromadb

from chromadb.config import Settings

class MyVectorDBConnector:

def init (self, collection_name, embedding_fn):

chroma_client = chromadb.Client(Settings(allow_reset=True))

复制代码
    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

class RAG_Bot:

def init (self, vector_db, llm_api, n_results=2):

self.vector_db = vector_db

self.llm_api = llm_api

self.n_results = n_results

复制代码
def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query, self.n_results)

    # 2. 构建 Prompt
    prompt = build_prompt(
        prompt_template, info=search_results['documents'][0], query=user_query)

    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

创建一个RAG机器人

bot = RAG_Bot(

vector_db,

llm_api=get_completion

)

user_query = "llama 2有对话版吗?"

response = bot.chat(user_query)

print(response)

相关推荐
APIshop5 分钟前
实战解析电商api:1688item_search-按关键字搜索商品数据
开发语言·python
就这个丶调调8 分钟前
Python学习路线全攻略:从入门到精通
人工智能·python·编程入门·学习路线
袁袁袁袁满10 分钟前
Python爬虫下载PDF文件
爬虫·python·pdf·python爬虫下载pdf文件
叫我:松哥12 分钟前
基于Flask开发的智能招聘平台,集成了AI匹配引擎、数据预测分析和可视化展示功能
人工智能·后端·python·信息可视化·自然语言处理·flask·推荐算法
yangminlei18 分钟前
Spring Boot 实现 DOCX 转 PDF
开发语言·spring boot·python
小二·18 分钟前
Python Web 开发进阶实战:前端现代化 —— Vue 3 + TypeScript 重构 Layui 界面,打造高性能 SPA
前端·python·typescript
万行21 分钟前
机器学习&第六.七章决策树,集成学习
人工智能·python·算法·决策树·机器学习·集成学习
weixin_4624462324 分钟前
Python+React 专为儿童打造的汉字学习平台:从学前到小学的智能汉字教育解决方案
python·学习·react.js
_-CHEN-_25 分钟前
Prompt Manager: 让你的 AI 提示词管理更专业
人工智能·prompt
河码匠28 分钟前
Django rest framework 自定义url
后端·python·django