Mindspore 公开课 - prompt

prompt 介绍

Fine-Tuning to Prompt Learning
Pre-train, Fine-tune
  1. BERT
  • bidirectional transformer,词语和句子级别的特征抽取,注重文本理解
  • Pre-train: Maked Language Model + Next Sentence Prediction
  • Fine-tune: 根据任务选取对应的representation(最后一层hidden state输出),放入线性层中

例:Natural Language Inference

Pre-train, Fine-tune: models
  1. BERT
    • bidirectional transformer,词语和句子级别的特征抽取,注重文本理解
    • Pre-train: Maked Language Model + Next Sentence Prediction
    • Fine-tune: 根据任务选取对应的representation(最后一层hidden state输出),放入线性层中
      例:Named Entity Recognition
Pre-train, Fine-tune: models
  1. GPT
    • auto-regressive model,通过前序文本预测下一词汇,注重文本生成
    • Pre-train: L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , ... , u i − 1 ; Θ ) L_1(\mathcal{U})=\sum_i \log P\left(u_i \mid u_{i-k}, \ldots, u_{i-1} ; \Theta\right) L1(U)=∑ilogP(ui∣ui−k,...,ui−1;Θ)
    • Fine-tune: task-specific input transformations + fully-connected layer
Pre-train, Fine-tune: challenges
  1. gap between pre-train and fine-tune

少样本学习能力差、容易过拟合

Pre-train, Fine-tune: challenges
  1. gap between pre-train and fine-tune

少样本学习能力差、容易过拟合

Pre-train, Fine-tune: challenges
  1. cost of fine-tune

现在的预训练模型参数量越来越大,为了一个特定的任务去 finetuning 一个模型,然后部署于线上业务,也会造成部署资源的极大浪费

Pre-train, Prompt, Predict: what is prompting

  • fine-tuning: 通过改变模型结构,使模型适配下游任务
  • prompt learning: 模型结构不变,通过重构任务描述,使下游任务适配模型
Pre-train, Prompt, Predict: workflow of prompting
Pre-train, Prompt, Predict: workflow of prompting
  1. Template: 根据任务设计prompt模板,其中包含 input slot[X] 和 answer slot [Z],后根据模板在 input slot 中填入输入
  2. Mapping (Verbalizer): 将输出的预测结果映射回label
Pre-train, Prompt, Predict: prompt design

Prompting 中最主要的两个部分为 template 与 verbalizer 的设计。

他们可以分别基于任务类型和预训练模型选择(shape)或生成方式(huamn effort)进行分类。

相关推荐
胡玉洋2 天前
从新手到高手:全面解析 AI 时代的「魔法咒语」——Prompt
人工智能·ai·prompt·transformer·协议
L_cl2 天前
【NLP 72、Prompt、Agent、MCP、function calling】
prompt
Lilith的AI学习日记2 天前
Claude官方63组提示词模板全解析:从工作到生活的AI应用指南
人工智能·prompt·生活·ai编程·claude
java干货3 天前
每日Prompt:超现实交互场景
prompt
java干货3 天前
每日Prompt:发光线条解剖图
prompt
AI大模型顾潇3 天前
[特殊字符] 本地大模型编程实战(29):用大语言模型LLM查询图数据库NEO4J(2)
前端·数据库·人工智能·语言模型·自然语言处理·prompt·neo4j
java干货3 天前
每日Prompt:三只动物与地标自拍
prompt
0x2113 天前
[论文阅读]Formalizing and Benchmarking Prompt Injection Attacks and Defenses
论文阅读·prompt
java干货4 天前
每日Prompt:定制动漫手办
prompt
AIWritePaper智能写作探索5 天前
高质量学术引言如何妙用ChatGPT?如何写提示词?
人工智能·chatgpt·prompt·智能写作·aiwritepaper·引言