Mindspore 公开课 - prompt

prompt 介绍

Fine-Tuning to Prompt Learning
Pre-train, Fine-tune
  1. BERT
  • bidirectional transformer,词语和句子级别的特征抽取,注重文本理解
  • Pre-train: Maked Language Model + Next Sentence Prediction
  • Fine-tune: 根据任务选取对应的representation(最后一层hidden state输出),放入线性层中

例:Natural Language Inference

Pre-train, Fine-tune: models
  1. BERT
    • bidirectional transformer,词语和句子级别的特征抽取,注重文本理解
    • Pre-train: Maked Language Model + Next Sentence Prediction
    • Fine-tune: 根据任务选取对应的representation(最后一层hidden state输出),放入线性层中
      例:Named Entity Recognition
Pre-train, Fine-tune: models
  1. GPT
    • auto-regressive model,通过前序文本预测下一词汇,注重文本生成
    • Pre-train: L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , ... , u i − 1 ; Θ ) L_1(\mathcal{U})=\sum_i \log P\left(u_i \mid u_{i-k}, \ldots, u_{i-1} ; \Theta\right) L1(U)=∑ilogP(ui∣ui−k,...,ui−1;Θ)
    • Fine-tune: task-specific input transformations + fully-connected layer
Pre-train, Fine-tune: challenges
  1. gap between pre-train and fine-tune

少样本学习能力差、容易过拟合

Pre-train, Fine-tune: challenges
  1. gap between pre-train and fine-tune

少样本学习能力差、容易过拟合

Pre-train, Fine-tune: challenges
  1. cost of fine-tune

现在的预训练模型参数量越来越大,为了一个特定的任务去 finetuning 一个模型,然后部署于线上业务,也会造成部署资源的极大浪费

Pre-train, Prompt, Predict: what is prompting

  • fine-tuning: 通过改变模型结构,使模型适配下游任务
  • prompt learning: 模型结构不变,通过重构任务描述,使下游任务适配模型
Pre-train, Prompt, Predict: workflow of prompting
Pre-train, Prompt, Predict: workflow of prompting
  1. Template: 根据任务设计prompt模板,其中包含 input slot[X] 和 answer slot [Z],后根据模板在 input slot 中填入输入
  2. Mapping (Verbalizer): 将输出的预测结果映射回label
Pre-train, Prompt, Predict: prompt design

Prompting 中最主要的两个部分为 template 与 verbalizer 的设计。

他们可以分别基于任务类型和预训练模型选择(shape)或生成方式(huamn effort)进行分类。

相关推荐
weixin_446260853 天前
如何与AI对话,写好Prompt
人工智能·prompt
匹马夕阳3 天前
大模型(LLM)提示工程(Prompt Engineering)初识
人工智能·语言模型·prompt
AIGC大时代3 天前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
engchina3 天前
多模态抽取图片信息的 Prompt
prompt·多模态·抽取图片信息
SomeB1oody5 天前
获取OpenAI官方给ChatGPT的系统定义Prompt
人工智能·语言模型·chatgpt·prompt
旷野..5 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
AIzealot无6 天前
论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)
人工智能·语言模型·自然语言处理·prompt·提示词
confiself6 天前
大模型系列——投机解码:Prompt Lookup Decoding代码解读
prompt
杨过过儿6 天前
【Prompt Engineering】7 聊天机器人
人工智能·机器人·prompt
学习前端的小z6 天前
【AIGC】ChatGPT 结构化 Prompt 的高级应用
chatgpt·prompt·aigc