AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程

AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程

在人工智能领域,尤其是与大型语言模型(LLM)相关的应用开发中,一个新兴的概念正在逐渐取代传统的提示工程(Prompt Engineering),那就是上下文工程(Context Engineering)。本文将深入探讨这一转变背后的原因、上下文工程的内涵以及它对AI应用开发的重要意义。

一、什么是上下文工程?

上下文工程是一种构建动态系统的过程,目的是为LLM提供正确格式的信息和工具,使其能够合理地完成任务。这与传统的提示工程有着本质的区别。提示工程主要关注于如何巧妙地措辞提示,以期从LLM中获得更好的答案。然而,随着应用的复杂性不断增加,人们逐渐意识到,向AI提供完整且结构化的上下文比任何巧妙的措辞都更为重要。

上下文工程是一个系统,而不是简单的字符串。它是一个在主LLM调用之前运行的系统,能够从多个来源获取上下文,包括应用开发者、用户、之前的交互、工具调用或其他外部数据。这个系统是动态的,可以根据不同的任务和情境动态地构建最终的提示。它强调提供正确的信息和工具,如果输入的信息不准确或不完整,输出的结果也必然不可靠。同时,信息和工具的格式也至关重要,就像与人类沟通一样,清晰、简洁的格式更容易被理解和处理。

二、上下文工程的重要性

当基于LLM的智能体系统(Agent)出现问题时,很多时候并非模型本身的问题,而是因为没有向模型提供适当的上下文。随着模型技术的不断进步,模型本身的错误越来越少,而上下文错误却成为了主要问题。上下文可能存在问题的原因包括:缺少模型做出正确决策所需的关键上下文信息;上下文格式不佳,影响模型对数据的理解和处理。

例如,想象一个AI助手被要求根据一封简单的电子邮件安排会议。如果这个助手只有用户请求的上下文,而没有其他相关信息,如日历信息、过去的电子邮件往来、联系人列表等,那么它生成的回复可能是无用且机械的。相反,如果能够在调用LLM之前,将这些相关的信息作为上下文提供给模型,那么生成的回复就会更加智能和实用。

三、上下文工程与提示工程的关系

虽然提示工程是上下文工程的一个子集,但上下文工程的范围更广。提示工程更多地关注于如何将上下文以最佳的方式组织在提示中,以适应动态数据并正确地格式化它们。而上下文工程则不仅包括提示的构建,还包括从多个来源收集和整合上下文信息,以及确保这些信息和工具的格式适合LLM处理。

四、上下文工程的实践案例

一些基本的上下文工程实践包括:

  • 工具使用:确保代理在需要访问外部信息时,有相应的工具可以使用,并且这些工具返回的信息格式要便于LLM理解和处理。
  • 短期记忆:在长时间的对话中,创建对话摘要,并在后续对话中使用这些摘要。
  • 长期记忆:能够获取用户在之前对话中表达的偏好。
  • 提示工程:在提示中清晰地列举代理的行为指令。
  • 检索:动态地检索信息,并在调用LLM之前将其插入到提示中。

五、LangGraph和LangSmith如何助力上下文工程

LangGraph是一个以可控性为目标构建的代理框架,它允许开发者完全控制代理的运行步骤、输入LLM的内容以及输出的存储位置。这种高度的可控性使得开发者可以进行各种复杂的上下文工程操作。而LangSmith则是一个LLM应用的可观测性和评估解决方案,其关键功能之一是能够追踪代理调用。通过LangSmith,开发者可以看到代理运行的所有步骤,以及输入和输出LLM的确切内容,从而调试上下文是否包含了完成任务所需的所有相关信息和工具。

六、结论

上下文工程的兴起反映了AI应用开发的一个重要转变。它强调了为LLM提供高质量上下文的重要性,这不仅包括正确的信息和工具,还包括这些信息和工具的格式和动态性。随着模型技术的不断发展,上下文工程将成为AI工程师必须掌握的关键技能。通过构建动态的上下文系统,我们可以使LLM更好地完成各种复杂任务。

七、参考资料

相关推荐
碣石潇湘无限路14 分钟前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习24 分钟前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河25 分钟前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能
陈敬雷-充电了么-CEO兼CTO34 分钟前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
学术 学术 Fun40 分钟前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
文浩(楠搏万)1 小时前
用OBS Studio录制WAV音频,玩转语音克隆和文本转语音!
大模型·音视频·tts·wav·obs·声音克隆·语音录制
风铃喵游1 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
booooooty2 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer2 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标2 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒