Floyd求最短路

概念

Floyd算法是一种解决图中所有点对之间最短路径的经典算法。使用动态规划的思想,通过中间节点逐步优化已知的最短路径。Floyd算法的核心思想是三层循环,对每一对节点(i, j)检查是否存在中间节点k,使得经过k节点的路径更短。如果存在这样的k,就更新(i, j)之间的最短路径

步骤

  1. 初始化: 构建一个二维数组dist,表示每一对节点之间的最短路径长度。若两节点之间存在直接连接,则dist[i][j]为直接路径长度,否则为无穷大。
  2. 动态规划更新: 使用三层循环遍历所有节点对(i, j),检查是否存在中间节点k,使得路径(i, k, j)比当前已知路径更短。如果是,则更新dist[i][j]
  3. 输出结果: 经过三层循环的迭代后,dist数组记录了所有节点对之间的最短路径长度。

模板

java 复制代码
// Assuming n is the number of nodes
// g[i][j] represents the weight of the edge between node i and node j
// Initialize g[i][j] as positive infinity for non-connected nodes

void floyd() {
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
            }
        }
    }
}
  • 如果节点的编号是从0开始,那么所有循环的范围应为for (int k = 0; k < n; k++)for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)
  • g[i][j]应该初始化为正无穷大,表示节点i和节点j之间没有直接的连接。
  • g[i][i](对角线上的元素)应该初始化为0,表示节点到自身的距离为0。

题目应用

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k

接下来 m 行,每行包含三个整数 x,y,z表示存在一条从点 x 到点 y 的有向边,边长为 z

接下来 k 行,每行包含两个整数 x,y表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

  • 1≤n≤200
  • 1≤k≤n^2
  • 1≤m≤20000
  • 图中涉及边长绝对值均不超过 10000。

输入样例:

复制代码
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

复制代码
impossible
1

代码

java 复制代码
import java.util.Arrays;
import java.util.Scanner;

/**
 * 这道题的坑对我而言是顶点没从1开始,而是从0开始!
 */
public class Main {
    static int n, m , k, N = 210, max = (int)1e8;
    static int[][] g = new int[N][N];
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        n = in.nextInt();
        m = in.nextInt();
        k = in.nextInt();
        for (int i = 1;i <= n;i ++) {
            Arrays.fill(g[i], max);
        }
        for (int i = 1;i <= n;i ++) {
            g[i][i] = 0;
        }
        for (int i = 0;i < m;i ++) {
            int x = in.nextInt();
            int y = in.nextInt();
            int z = in.nextInt();
            g[x][y] = Math.min(g[x][y], z);
        }
        floyd();
        while (k > 0) {
            k--;
            int x = in.nextInt();
            int y = in.nextInt();
            if (g[x][y] > max / 2) {
                System.out.println("impossible");
            } else {
                System.out.println(g[x][y]);
            }
        }
    }
    public static void floyd() {
        for (int k = 1;k <= n;k ++) {
            for (int i = 1;i <= n;i ++) {
                for (int j = 1;j <= n;j ++) {
                    g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
                }
            }
        }
    }
}
相关推荐
幽络源小助理33 分钟前
springboot校园车辆管理系统源码 – SpringBoot+Vue项目免费下载 | 幽络源
vue.js·spring boot·后端
刀法如飞35 分钟前
一款开箱即用的Spring Boot 4 DDD工程脚手架
java·后端·架构
uzong1 小时前
后端系统设计文档模板
后端
幽络源小助理1 小时前
SpringBoot+Vue车票管理系统源码下载 – 幽络源免费项目实战代码
vue.js·spring boot·后端
uzong1 小时前
软件架构指南 Software Architecture Guide
后端
又是忙碌的一天1 小时前
SpringBoot 创建及登录、拦截器
java·spring boot·后端
勇哥java实战分享2 小时前
短信平台 Pro 版本 ,比开源版本更强大
后端
学历真的很重要2 小时前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
计算机毕设VX:Fegn08952 小时前
计算机毕业设计|基于springboot + vue二手家电管理系统(源码+数据库+文档)
vue.js·spring boot·后端·课程设计
上进小菜猪3 小时前
基于 YOLOv8 的智能杂草检测识别实战 [目标检测完整源码]
后端