hanlp,pkuseg,jieba,cutword分词实践

总结:只有jieba,cutword,baidu lac成功将色盲色弱成功分对,这两个库字典应该是最全的

hanlp[持续更新中]

https://github.com/hankcs/HanLP/blob/doc-zh/plugins/hanlp_demo/hanlp_demo/zh/tok_stl.ipynb

python 复制代码
import hanlp
# hanlp.pretrained.tok.ALL # 语种见名称最后一个字段或相应语料库


tok = hanlp.load(hanlp.pretrained.tok.COARSE_ELECTRA_SMALL_ZH)
# coarse和fine模型训练自9970万字的大型综合语料库,覆盖新闻、社交媒体、金融、法律等多个领域,是已知范围内全世界最大的中文分词语料库

# tok.dict_combine = './data/dict.txt'
print(tok(['身高1.60米以上,无色盲色弱具体要求见我校招生章程']))

pkuseg[不再维护了]

https://github.com/lancopku/pkuseg-python

下载最新模型

python 复制代码
import pkuseg
c = pkuseg.pkuseg(model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #指定模型路径加载,如果只写模型名称,会报错[Errno 2] No such file or directory: 'default_v2\\unigram_word.txt'
# c = pkuseg.pkuseg(user_dict=dict_path,model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #, postag = True
print(c.cut('身高1.60米以上,无色盲色弱具体要求见我校招生章程'))

jieba[不再维护了]

https://github.com/fxsjy/jieba


HMM中文分词原理

python 复制代码
import jieba

# jieba.load_userdict(file_name)
sentence = '身高1.60米以上,无色盲色弱具体要求见我校招生章程'
#jieba分词有三种不同的分词模式:精确模式、全模式和搜索引擎模式:
seg_list = jieba.cut(sentence, cut_all=True) #全模式
print("Full Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, cut_all=False) #精确模式
print("Default Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=False) #不使用HMM模型
print("/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=True) #使用HMM模型
print("/".join(seg_list))

cutword[202401最新]

https://github.com/liwenju0/cutword

复制代码
from  cutword import Cutter

cutter = Cutter(want_long_word=True)
res = cutter.cutword("身高1.60米以上,无色盲色弱具体要求见我校招生章程")
print(res)

lac【不再维护】

https://github.com/baidu/lac

python 复制代码
from LAC import LAC

# 装载分词模型
seg_lac = LAC(mode='seg')
seg_lac.load_customization('./dictionary/dict.txt', sep=None)


texts = [u"身高1.60米以上,无色盲色弱具体要求见我校招生章程"]
seg_result = seg_lac.run(texts)
print(seg_result)
相关推荐
一宿君3 天前
Github 9 个惊艳的开源 NL2SQL 项目
sql·nlp·github
AustinCyy4 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
乔公子搬砖8 天前
NLP 2025全景指南:从分词到128专家MoE模型,手撕BERT情感分析实战(第四章)
人工智能·ai·自然语言处理·nlp·aigc
Gyoku Mint11 天前
自然语言处理×第四卷:文本特征与数据——她开始准备:每一次输入,都是为了更像你地说话
人工智能·pytorch·神经网络·语言模型·自然语言处理·数据分析·nlp
java1234_小锋13 天前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 词云图-微博评论词云图实现
python·自然语言处理·flask·nlp·nlp舆情分析
charlee4415 天前
PandasAI连接LLM对MySQL数据库进行数据分析
mysql·数据分析·nlp·pandasai·deepseek
热心不起来的市民小周16 天前
True or False? 基于 BERT 学生数学问题误解检测
深度学习·nlp·bert
xiaoli232720 天前
课题学习笔记3——SBERT
笔记·学习·nlp·bert
java1234_小锋21 天前
[免费]【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)【论文+源码+SQL脚本】
python·flask·nlp·舆情分析·微博舆情分析