Pytorch学习第二周--Day 12-13: 构建你的第一个神经网络

Day 12-13: 构建你的第一个神经网络

在这两天里,我动手实践构建了我的第一个神经网络,目的是解决一个基本的分类问题。使用了两个主流的深度学习框架:PyTorch和TensorFlow,以对比和理解它们在神经网络构建方面的不同。

目标:构建一个全连接的神经网络来处理分类问题。

过程:

设计网络结构,包括输入层、若干隐藏层和输出层。

选择合适的激活函数,如ReLU。

定义损失函数和优化器,例如使用交叉熵损失和Adam优化器。

实现:

在PyTorch中,我定义了一个nn.Module类,通过定义forward方法来实现数据的前向传播。

在TensorFlow中,我使用Sequential API来构建模型,这是一种更简洁、更高级的方法。

以下是具体的实现代码:

PyTorch代码示例

import torch

import torch.nn as nn

import torch.optim as optim

定义一个全连接神经网络

class FullyConnectedNN(nn.Module):

def init (self):

super(FullyConnectedNN, self).init ()

self.fc1 = nn.Linear(784, 128) # 假设输入是28x28图像,展平后的大小为784

self.relu = nn.ReLU()

self.fc2 = nn.Linear(128, 10) # 假设有10个类别

复制代码
def forward(self, x):
    x = self.fc1(x)
    x = self.relu(x)
    x = self.fc2(x)
    return x

实例化模型

model = FullyConnectedNN()

定义损失函数和优化器

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

TensorFlow代码示例

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

定义一个全连接神经网络

model = Sequential([

Dense(128, activation='relu', input_shape=(784,)), # 假设输入是28x28图像,展平后的大小为784

Dense(10, activation='softmax') # 假设有10个类别

])

编译模型

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

在这两个实现中,我专注于构建一个相对简单的神经网络,适用于处理基本的分类问题。通过这个练习,我加深了对神经网络结构和深度学习框架的理解,并获得了实际操作的经验。

相关推荐
海边夕阳20065 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
c***21295 小时前
Springboot3学习(5、Druid使用及配置)
android·学习
GISer_Jing6 小时前
jx前端架构学习
前端·学习·架构
灰灰勇闯IT6 小时前
隐语MOOC三期学习感悟:解锁数据要素流通的“三维认知”与落地逻辑
笔记·学习
好奇龙猫6 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(25):语法和单词 第5-6课
学习
calvinpaean7 小时前
VGGT 论文学习
学习
毕设源码-邱学长7 小时前
【开题答辩全过程】以 基于Java的公职备考在线学习系统的设计与实现为例,包含答辩的问题和答案
java·开发语言·学习
wdfk_prog7 小时前
[Linux]学习笔记系列 -- [block][mq-deadline]
linux·笔记·学习
('-')8 小时前
《从根上理解MySQL是怎样运行的》第二十二章学习笔记
笔记·学习·mysql
人邮异步社区8 小时前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型