Pytorch学习第二周--Day 12-13: 构建你的第一个神经网络

Day 12-13: 构建你的第一个神经网络

在这两天里,我动手实践构建了我的第一个神经网络,目的是解决一个基本的分类问题。使用了两个主流的深度学习框架:PyTorch和TensorFlow,以对比和理解它们在神经网络构建方面的不同。

目标:构建一个全连接的神经网络来处理分类问题。

过程:

设计网络结构,包括输入层、若干隐藏层和输出层。

选择合适的激活函数,如ReLU。

定义损失函数和优化器,例如使用交叉熵损失和Adam优化器。

实现:

在PyTorch中,我定义了一个nn.Module类,通过定义forward方法来实现数据的前向传播。

在TensorFlow中,我使用Sequential API来构建模型,这是一种更简洁、更高级的方法。

以下是具体的实现代码:

PyTorch代码示例

import torch

import torch.nn as nn

import torch.optim as optim

定义一个全连接神经网络

class FullyConnectedNN(nn.Module):

def init (self):

super(FullyConnectedNN, self).init ()

self.fc1 = nn.Linear(784, 128) # 假设输入是28x28图像,展平后的大小为784

self.relu = nn.ReLU()

self.fc2 = nn.Linear(128, 10) # 假设有10个类别

复制代码
def forward(self, x):
    x = self.fc1(x)
    x = self.relu(x)
    x = self.fc2(x)
    return x

实例化模型

model = FullyConnectedNN()

定义损失函数和优化器

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

TensorFlow代码示例

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

定义一个全连接神经网络

model = Sequential([

Dense(128, activation='relu', input_shape=(784,)), # 假设输入是28x28图像,展平后的大小为784

Dense(10, activation='softmax') # 假设有10个类别

])

编译模型

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

在这两个实现中,我专注于构建一个相对简单的神经网络,适用于处理基本的分类问题。通过这个练习,我加深了对神经网络结构和深度学习框架的理解,并获得了实际操作的经验。

相关推荐
EnglishJun14 分钟前
Linux系统编程(二)---学习Linux系统函数
linux·运维·学习
im_AMBER14 分钟前
Leetcode 115 分割链表 | 随机链表的复制
数据结构·学习·算法·leetcode
小陶的学习笔记42 分钟前
python~基础
开发语言·python·学习
学编程的闹钟1 小时前
92【<h1-h6>指定文字大小】
学习
森之鸟1 小时前
【我的经济学基础01-宏观经济】
学习
我的xiaodoujiao1 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 46--撰写 README项目说明文档文件
python·学习·测试工具·pytest
玄同7651 小时前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
第七序章1 小时前
【Linux学习笔记】初识Linux —— 理解gcc编译器
linux·运维·服务器·开发语言·人工智能·笔记·学习
学编程的闹钟1 小时前
99【html与php的混写】
学习
-Springer-1 小时前
STM32 学习 —— 个人学习笔记5(EXTI 外部中断 & 对射式红外传感器及旋转编码器计数)
笔记·stm32·学习