【人工智能与深度学习】当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

在神经网络中,全连接层(也称为稠密层或线性层)的参数量计算通常包括权重(weights)和偏置(biases)。对于一个全连接层,如果输入层维度(即输入特征的数量)为1024,输出层维度(即输出特征的数量)为100,那么参数的计算方式如下:

  1. 权重:每个输入特征都与每个输出特征连接。因此,权重的总数等于输入特征数乘以输出特征数。在这个例子中,就是 (1024 \times 100 = 102400)。

  2. 偏置:每个输出特征都有一个偏置项。因此,偏置的总数等于输出特征数。在这个例子中,就是100。

把这两部分相加,得到全连接层的总参数量:(102400 + 100 = 102500)。

这些参数在训练过程中通过反向传播算法进行学习,以便网络能够从输入特征中有效地学习到预测输出的映射关系。

相关推荐
阿狸OKay14 分钟前
einops 库和 PyTorch 的 einsum 的语法
人工智能·pytorch·python
低调小一18 分钟前
Google AI Agent 白皮书拆解(1):从《Introduction to Agents》看清 Agent 的工程底座
人工智能
feasibility.21 分钟前
混元3D-dit-v2-mv-turbo生成3D模型初体验(ComfyUI)
人工智能·3d·aigc·三维建模·comfyui
极智-99637 分钟前
GitHub 热榜项目-日榜精选(2026-02-02)| AI智能体、终端工具、视频生成等 | openclaw、99、Maestro等
人工智能·github·视频生成·终端工具·ai智能体·电子书管理·rust工具
悟纤1 小时前
AI 音乐创作中的音乐织体(Texture)完整指南 | Suno高级篇 | 第30篇
人工智能·suno·suno ai·suno api·ai music
可触的未来,发芽的智生1 小时前
狂想:为AGI代称造字ta,《第三类智慧存在,神的赐名》
javascript·人工智能·python·神经网络·程序人生
莱茶荼菜1 小时前
yolo26 阅读笔记
人工智能·笔记·深度学习·ai·yolo26
Dingdangcat861 小时前
【YOLOv8改进实战】使用Ghost模块优化P2结构提升涂胶缺陷检测精度_1
人工智能·yolo·目标跟踪
希艾席帝恩2 小时前
智慧城市建设中,数字孪生的价值在哪里?
人工智能·低代码·私有化部署·数字孪生·数字化转型
我的offer在哪里2 小时前
开源 AI 生成游戏平台:原理、开源项目与落地实战指南
人工智能·游戏·开源