【人工智能与深度学习】当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

在神经网络中,全连接层(也称为稠密层或线性层)的参数量计算通常包括权重(weights)和偏置(biases)。对于一个全连接层,如果输入层维度(即输入特征的数量)为1024,输出层维度(即输出特征的数量)为100,那么参数的计算方式如下:

  1. 权重:每个输入特征都与每个输出特征连接。因此,权重的总数等于输入特征数乘以输出特征数。在这个例子中,就是 (1024 \times 100 = 102400)。

  2. 偏置:每个输出特征都有一个偏置项。因此,偏置的总数等于输出特征数。在这个例子中,就是100。

把这两部分相加,得到全连接层的总参数量:(102400 + 100 = 102500)。

这些参数在训练过程中通过反向传播算法进行学习,以便网络能够从输入特征中有效地学习到预测输出的映射关系。

相关推荐
java1234_小锋40 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 计算图和 tf.function 简介
python·深度学习·tensorflow·tensorflow2
szxinmai主板定制专家1 小时前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
聚客AI1 小时前
🌈提示工程已过时?上下文工程从理论到实践的完整路线图
人工智能·llm·agent
C嘎嘎嵌入式开发1 小时前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
红宝村村长1 小时前
【学习笔记】从零构建大模型
深度学习
文心快码BaiduComate1 小时前
开工不累,双强护航:文心快码接入 DeepSeek-V3.2-Exp和 GLM-4.6,助你节后高效Coding
前端·人工智能·后端
AI小云2 小时前
【Python与AI基础】Python编程基础:函数与参数
人工智能·python
white-persist2 小时前
MCP协议深度解析:AI时代的通用连接器
网络·人工智能·windows·爬虫·python·自动化
新智元2 小时前
谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
人工智能·openai