【人工智能与深度学习】当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

当输入层维度为1024,输出层维度为100时,为什么全连接层参数量为1024*100+100

在神经网络中,全连接层(也称为稠密层或线性层)的参数量计算通常包括权重(weights)和偏置(biases)。对于一个全连接层,如果输入层维度(即输入特征的数量)为1024,输出层维度(即输出特征的数量)为100,那么参数的计算方式如下:

  1. 权重:每个输入特征都与每个输出特征连接。因此,权重的总数等于输入特征数乘以输出特征数。在这个例子中,就是 (1024 \times 100 = 102400)。

  2. 偏置:每个输出特征都有一个偏置项。因此,偏置的总数等于输出特征数。在这个例子中,就是100。

把这两部分相加,得到全连接层的总参数量:(102400 + 100 = 102500)。

这些参数在训练过程中通过反向传播算法进行学习,以便网络能够从输入特征中有效地学习到预测输出的映射关系。

相关推荐
yLDeveloper6 分钟前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_20 分钟前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信25 分钟前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_8362358628 分钟前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs32 分钟前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮37 分钟前
AI 视觉连载2:灰度图
人工智能
yunfuuwqi1 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云1 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
2的n次方_2 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer