和鲸社区深度学习基础训练营2025年关卡3_Q1(1)

Q1: 给定一个大小为 32x32x1 的灰度图像(MNIST 手写数字图像),以及一个大小为 3x3x1x8 的卷积核,使用 conv2D_gemm 函数(我们上文中实现的)对图像进行卷积运算,步幅为 1,并填充方式为 same。 请问卷积结果的形状是多少?

1.纯numpy

复制代码
import numpy as np

# 生成随机图像和卷积核
input_image = np.random.rand(32, 32, 1)  # 32x32x1
kernel = np.random.rand(3, 3, 1, 8)     # 3x3x1x8

# 执行卷积运算
output = np.zeros((32, 32, 8))  # 初始化输出数组

# 使用'same'填充方式
pad_width = ((1, 1), (1, 1), (0, 0))
padded_image = np.pad(input_image, pad_width, mode='constant')

# 执行卷积
for i in range(8):  # 对每个卷积核
    for y in range(32):  # 高度方向
        for x in range(32):  # 宽度方向
            # 提取当前3x3区域
            region = padded_image[y:y+3, x:x+3, :]
            # 点乘并求和
            output[y, x, i] = np.sum(region * kernel[:, :, :, i])

print("卷积结果的形状:", output.shape)

运行结果:

2.使用 scipy.signal.convolve2d

复制代码
import numpy as np
from scipy.signal import convolve2d

# 生成随机输入图像和卷积核
input_image = np.random.rand(32, 32, 1)  # 32x32x1
kernel = np.random.rand(3, 3, 1, 8)     # 3x3x1x8

# 初始化输出数组
output = np.zeros((32, 32, 8))

# 对每个卷积核执行卷积
for i in range(8):
    # 提取当前卷积核(3x3x1)
    current_kernel = kernel[:, :, 0, i]
    # 对每个通道执行卷积
    output[:, :, i] = convolve2d(input_image[:, :, 0], current_kernel, 
                                mode='same', boundary='fill')

print("卷积结果的形状:", output.shape)

运行结果:

3.pytorch中的卷积函数

代码1

复制代码
import torch
import torch.nn as nn

conv_layer = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1)
input_tensor = torch.randn(1, 1, 32, 32) 
output = conv_layer(input_tensor)
print(output.shape)  # 查看输出张量的形状

代码2

复制代码
import torch
import torch.nn as nn

# 生成随机输入图像和卷积核
input_image = torch.rand(1, 1, 32, 32)  # (batch_size, channels, height, width)
kernel = torch.rand(8, 1, 3, 3)         # (out_channels, in_channels, height, width)

# 创建卷积层
conv = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, 
                stride=1, padding=1, bias=False)  # padding=1实现'same'

# 手动设置卷积核权重
conv.weight = nn.Parameter(kernel)

# 执行卷积
output = conv(input_image)

print("卷积结果的形状:", output.shape)

运行结果:

(batch_size, channels, height, width)

相关推荐
清云逸仙4 分钟前
AI Prompt应用实战:评论审核系统实现
人工智能·经验分享·ai·语言模型·prompt·ai编程
正宗咸豆花5 分钟前
Prompt Minder:重塑 AI 时代的提示词工程基础设施
人工智能·prompt
清云逸仙18 分钟前
使用AI(GPT-4)实现AI prompt 应用--自动审核评论系统
人工智能·经验分享·ai·语言模型·ai编程
Mintopia1 小时前
Claude Code CLI UI
人工智能·aigc·全栈
Mr.Winter`1 小时前
基于Proto3和单例模式的系统参数配置模块设计(附C++案例实现)
c++·人工智能·单例模式·机器人
Mintopia1 小时前
🌐 动态网络环境下的 WebAIGC 断点续传与容错技术
前端·人工智能·aigc
qinyia1 小时前
WisdomSSH解决因未使用Docker资源导致的磁盘空间不足问题
运维·服务器·人工智能·后端·docker·ssh·github
Stark-C1 小时前
凭实力出圈,头戴耳机的六边形战士!性价比拉满的iKF Mars实测
人工智能
CoovallyAIHub1 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉
paperxie_xiexuo1 小时前
面向多场景演示需求的AI辅助生成工具体系研究:十类平台的功能分型、技术实现与合规应用分析
大数据·人工智能·powerpoint·ppt