和鲸社区深度学习基础训练营2025年关卡3_Q1(1)

Q1: 给定一个大小为 32x32x1 的灰度图像(MNIST 手写数字图像),以及一个大小为 3x3x1x8 的卷积核,使用 conv2D_gemm 函数(我们上文中实现的)对图像进行卷积运算,步幅为 1,并填充方式为 same。 请问卷积结果的形状是多少?

1.纯numpy

复制代码
import numpy as np

# 生成随机图像和卷积核
input_image = np.random.rand(32, 32, 1)  # 32x32x1
kernel = np.random.rand(3, 3, 1, 8)     # 3x3x1x8

# 执行卷积运算
output = np.zeros((32, 32, 8))  # 初始化输出数组

# 使用'same'填充方式
pad_width = ((1, 1), (1, 1), (0, 0))
padded_image = np.pad(input_image, pad_width, mode='constant')

# 执行卷积
for i in range(8):  # 对每个卷积核
    for y in range(32):  # 高度方向
        for x in range(32):  # 宽度方向
            # 提取当前3x3区域
            region = padded_image[y:y+3, x:x+3, :]
            # 点乘并求和
            output[y, x, i] = np.sum(region * kernel[:, :, :, i])

print("卷积结果的形状:", output.shape)

运行结果:

2.使用 scipy.signal.convolve2d

复制代码
import numpy as np
from scipy.signal import convolve2d

# 生成随机输入图像和卷积核
input_image = np.random.rand(32, 32, 1)  # 32x32x1
kernel = np.random.rand(3, 3, 1, 8)     # 3x3x1x8

# 初始化输出数组
output = np.zeros((32, 32, 8))

# 对每个卷积核执行卷积
for i in range(8):
    # 提取当前卷积核(3x3x1)
    current_kernel = kernel[:, :, 0, i]
    # 对每个通道执行卷积
    output[:, :, i] = convolve2d(input_image[:, :, 0], current_kernel, 
                                mode='same', boundary='fill')

print("卷积结果的形状:", output.shape)

运行结果:

3.pytorch中的卷积函数

代码1

复制代码
import torch
import torch.nn as nn

conv_layer = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1)
input_tensor = torch.randn(1, 1, 32, 32) 
output = conv_layer(input_tensor)
print(output.shape)  # 查看输出张量的形状

代码2

复制代码
import torch
import torch.nn as nn

# 生成随机输入图像和卷积核
input_image = torch.rand(1, 1, 32, 32)  # (batch_size, channels, height, width)
kernel = torch.rand(8, 1, 3, 3)         # (out_channels, in_channels, height, width)

# 创建卷积层
conv = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, 
                stride=1, padding=1, bias=False)  # padding=1实现'same'

# 手动设置卷积核权重
conv.weight = nn.Parameter(kernel)

# 执行卷积
output = conv(input_image)

print("卷积结果的形状:", output.shape)

运行结果:

(batch_size, channels, height, width)

相关推荐
霍格沃兹测试开发学社测试人社区10 小时前
新手指南:通过 Playwright MCP Server 为 AI Agent 实现浏览器自动化能力
运维·人工智能·自动化
JJJJ_iii10 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
qq_4162764213 小时前
LOFAR物理频谱特征提取及实现
人工智能
Python图像识别13 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
余俊晖13 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国15 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub16 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
哥布林学者16 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(二)
深度学习·ai
weixin_5195357716 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a16 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱