(超详细)7-YOLOV5改进-添加 CoTAttention注意力机制

1、在yolov5/models下面新建一个CoTAttention.py文件,在里面放入下面的代码

代码如下:

bash 复制代码
import numpy as np
import torch
from torch import flatten, nn
from torch.nn import init
from torch.nn.modules.activation import ReLU
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn import functional as F


class CoTAttention(nn.Module):

    def __init__(self, dim=512, kernel_size=3):
        super().__init__()
        self.dim = dim
        self.kernel_size = kernel_size

        self.key_embed = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),
            nn.BatchNorm2d(dim),
            nn.ReLU()
        )
        self.value_embed = nn.Sequential(
            nn.Conv2d(dim, dim, 1, bias=False),
            nn.BatchNorm2d(dim)
        )

        factor = 4
        self.attention_embed = nn.Sequential(
            nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),
            nn.BatchNorm2d(2 * dim // factor),
            nn.ReLU(),
            nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1)
        )

    def forward(self, x):
        bs, c, h, w = x.shape
        k1 = self.key_embed(x)  # bs,c,h,w
        v = self.value_embed(x).view(bs, c, -1)  # bs,c,h,w

        y = torch.cat([k1, x], dim=1)  # bs,2c,h,w
        att = self.attention_embed(y)  # bs,c*k*k,h,w
        att = att.reshape(bs, c, self.kernel_size * self.kernel_size, h, w)
        att = att.mean(2, keepdim=False).view(bs, c, -1)  # bs,c,h*w
        k2 = F.softmax(att, dim=-1) * v
        k2 = k2.view(bs, c, h, w)

        return k1 + k2

2、找到yolo.py文件,进行更改内容

在29行加一个from models.CoTAttention import CoTAttention, 保存即可

3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块CoTAttention加入到yolov5s.yaml里面,并更改一些内容。更改如下

4、在yolo.py里面加入两行代码(335-337)

保存即可!

运行

相关推荐
Jiyoungxx1 小时前
DAY 39 图像数据与显存
人工智能·深度学习
阿群今天学习了吗7 小时前
“鱼书”深度学习进阶笔记(3)第四章
人工智能·笔记·python·深度学习·算法
AI模块工坊8 小时前
IEEE 2025 | 重磅开源!SLAM框架用“法向量+LRU缓存”,将三维重建效率飙升72%!
人工智能·深度学习·神经网络·机器学习·计算机视觉
欣赏你流浪^8 小时前
物联网智能感知进阶:基于YOLO的琏雾系统视频分析
物联网·yolo·音视频
cver1239 小时前
人脸情绪检测数据集-9,400 张图片 智能客服系统 在线教育平台 心理健康监测 人机交互优化 市场研究与广告 安全监控系统
人工智能·安全·yolo·计算机视觉·目标跟踪·机器人·人机交互
洛华36311 小时前
初识神经网络04——构建神经网络2
人工智能·深度学习·神经网络
BarbaraChow12 小时前
Seed-VC:零样本语音转换与扩散transformer
人工智能·深度学习·transformer
ChironW12 小时前
Ubuntu 22.04 离线环境下完整安装 Anaconda、CUDA 12.1、NVIDIA 驱动及 cuDNN 8.9.3 教程
linux·运维·人工智能·深度学习·yolo·ubuntu
zl2913 小时前
论文学习22:UNETR: Transformers for 3D Medical Image Segmentation
深度学习·学习·transformer
是Dream呀13 小时前
YOLOv9:重构实时目标检测的技术革命
深度学习·机器学习