5G_射频测试_接收机测量(五)

7.2 Reference sensitivity level
  • 接收灵敏度是表示接收机能解析出信号的最小功率(和接收机noise figure相关所以RX lineup的大部分工作就是在调整Gain达到最佳NF)
  • The throughput shall be ≥ 95%(BER:bit error rate 并不是L3call的tput)
  • 对不同调制的信号要求也不一样,高阶调制信号需要更高的分辨率所以调制阶数越高能达到的灵敏度越低
  • 但实际上我们只测试最低的调制方式用于验证硬件能力
  • 测试信号暂用的频谱只有1/4的载波带宽,所以在自己做波形的时候要功率的分配弄错了灵敏度的接错就相差了6dB(在5G初期仪表厂家也犯过一样的错)
  • Table 7.2.5-1: NR Wide Area BS reference sensitivity levels

|-----------------------------------------|-------------------|-------------------------|-----------------|----------------------------|----------------------------|
| BS channel | Sub-carrier | Reference | Reference sensitivity power level, P REFSENS (dBm) |||
| bandwidth (MHz) | spacing (kHz) | measurement channel | f ≤ 3.0 GHz | 3.0 GHz < f ≤ 4.2 GHz | 4.2 GHz < f ≤ 6.0 GHz |
| 5, 10, 15 | 15 | G-FR1-A1-1 (Note 1) | -101 | -100.7 | -100.5 |
| | | G-FR1-A1-10 (Note 3) | -101 (Note 2) | -100.7 (Note 2) | -100.5 (Note 2) |
| 10, 15 | 30 | G-FR1-A1-2 (Note 1) | -101.1 | -100.8 | -100.6 |
| 10, 15 | 60 | G-FR1-A1-3 (Note 1) | -98.2 | -97.9 | -97.7 |
| 20, 25, 30, 40, | 15 | G-FR1-A1-4 (Note 1) | -94.6 | -94.3 | -94.1 |
| 50 | | G-FR1-A1-11 (Note 4) | -94.6 (Note 2) | -94.3 (Note 2) | -94.1 (Note 2) |
| 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 | 30 | G-FR1-A1-5 (Note 1) | -94.9 | -94.6 | -94.4 |
| 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 | 60 | G-FR1-A1-6 (Note 1) | -95 | -94.7 | -94.5 |

7.3 Dynamic range
  • 用来验证上行抗干扰的能力
  • 在典型的信号下(信号功率太大会导致基站饱和(LNA)当然也不能太小)加入高斯白噪声,看基站是否能解码
  • the throughput shall be ≥ 95%
  • 经常会调高噪声,验证基站能对抗多大的干扰。或者降低有用信号的功率。总之就是改变信噪比。
  • Table 7.3.5-1: Wide Area BS dynamic range

|--------------------------------------|------------------------------|-----------------------------------|------------------------------------|-------------------------------------------------------------|--------------------------------|
| BS channel bandwidth (MHz) | Subcarrier spacing (kHz) | Reference measurement channel | Wanted signal mean power (dBm) | Interfering signal mean power (dBm) / BW Config | Type of interfering signal |
| 5 | 15 | G-FR1-A2-1 | -70.4 | -82.5 | AWGN |
| | 30 | G-FR1-A2-2 | -71.1 | | |
| 10 | 15 | G-FR1-A2-1 | -70.4 | -79.3 | AWGN |
| | 30 | G-FR1-A2-2 | -71.1 | | |
| | 60 | G-FR1-A2-3 | -68.1 | | |

7.4 In-band selectivity and blocking (除了dynamic range是测试抗干扰能那在operation band内如果有干扰了,那我们怎么测试基站的抗干扰性能)

7.4.1 Adjacent Channel Selectivity (ACS)

  • 在operation band内我们的腔体滤波器是没有办法过滤干扰的,只能靠数字滤波
  • 和Dynamic range不一样的是干扰信号可能是自己或其他基站的杂散信号,所以这次干扰信号就是和载波信号一样的调制信号
  • 那么调制信号有不同的阶数,并且阶数越高抗干扰越差,那这个case的测试信号一般就选用高阶的调制信号

Table 7.4.1.5 - 1 : Base station A CS requirement

|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|
| BS channel bandwidth of the lowest/highest carrier received (MHz) | Wanted signal mean power (dBm) | Interfering signal mean power (dBm) |
| 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 (Note 1) | PREFSENS + 6 dB | Wide Area BS: -52 Medium Range BS: -47 Local Area BS: -44 |

7.4.2 In-band blocking

  • Operating band 以内符合general 和narrow blocking的要求
  • 和wanted信号靠的很近是容易fail的case

in-band blocking requirement applies from FUL_low - ΔfOOB to FUL_high + ΔfOOB, excluding the downlink frequency range of the operating band

Table 7.4.2.5-0: Δf OOB offset for NR operating bands

|---------------|------------------------------------------|--------------------------|
| BS type | Operating band characteristics | Δf OOB (MHz) |
| BS type 1-C | FUL_high -- FUL_low ≤ 200 MHz | 20 |
| | 200 MHz < FUL_high -- FUL_low ≤ 900 MHz | 60 |

Table 7.4.2.5 - 1 : Base station general blocking requirement

|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| BS channel bandwidth of the lowest/highest carrier received (MHz) | Wanted signal mean power (dBm) | Interfering signal mean power (dBm) | Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz) | Type of interfering signal |
| 5, 10, 15, 20 | PREFSENS + 6 dB | Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35 | ±7.5 | 5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs |
| 25, 30, 40, 50, 60, 70, 80, 90, 100 | PREFSENS + 6 dB | Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35 | ±30 | 20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs |
| NOTE: PREFSENS depends on the RAT. For NR, PREFSENS depends also on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3. For NB-IoT, PREFSENS depends also on the sub-carrier spacing as specified in tables 7.2-5, 7.2-6 and 7.2-8 of TS 36.141 [24]. |||||

Table 7.4.2.5 - 2 : Base station narrowband blocking requirement

|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|
| BS channel bandwidth of the lowest/highest carrier received (MHz) | Wanted signal mean power (dBm) | Interfering signal mean power (dBm) |
| 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 (Note 1) | PREFSENS + 6 dB | Wide Area BS: -49 Medium Range BS: -44 Local Area BS: -41 |
| NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that BS channel bandwidth NOTE 2: PREFSENS depends on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3. NOTE 3: 7.5 kHz shift is not applied to the wanted signal. |||

7.5 Out-of-band blocking

测完了带的抗干扰的验证就到带外了

特点测试耗时长

The CW interfering signal shall be swept with a step size of 1 MHz over than range 1 MHz to (FUL_low - ΔfOOB) MHz and (FUL_high + ΔfOOB) MHz to 12750 MHz.

Table 7. 5 . 5.1 -1: Out-of-band blocking performance requirement

|------------------------------------|-----------------------------------------|--------------------------------|
| Wanted signal mean power (dBm) | Interfering signal mean power (dBm) | Type of interfering signal |
| PREFSENS +6 dB (Note 1) | -15 | CW carrier |

7.5.5.2 Co-location requirements

除了一般的带外blocking还有DL 频带的co-location 模拟TX有大功率落在接收频段

Table 7. 5.5.2 -1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

|-------------------------------------------------------|----------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------|
| Frequency range of interfering signal | Wanted signal mean power for WA BS (dBm) | Interfering signal mean power for WA BS (dBm) | Interfering signal mean power for MR BS (dBm) | Interfering signal mean power for LA BS (dBm) | Type of interfering signal |
| Frequency range of co-located downlink operating band | PREFSENS +6dB (Note 1) | +16 | +8 | x (Note 2) | CW carrier |

7.6 Receiver spurious emissions

一般没有问题,测试意义不大

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the antenna connector (for BS type 1-C ) or at the TAB connector (for BS type 1-H ). The requirements apply to all BS with separate RX and TX antenna connectors / TAB connectors.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX antenna connectors / TAB connectorsterminated.

For TDD connectors capable of transmit and receive ensure the transmitter is OFF.

Table 7.6.5.1-1: General BS receiver spurious emissions limits

|-----------------------------------------------------------------------------------------|-------------------|---------------------------|------------------------|
| Spurious frequency range | Basic limit | Measurement bandwidth | Notes |
| 30 MHz -- 1 GHz | -57 dBm | 100 kHz | Note 1 |
| 1 GHz -- 12.75 GHz | -47 dBm | 1 MHz | Note 1, Note 2 |
| 12.75 GHz -- 5th harmonic of the upper frequency edge of the UL operating band in GHz | -47 dBm | 1 MHz | Note 1, Note 2, Note 3 |

7.7 Receiver intermodulation

two interfering RF signals can produce an interfering signal in the band of the desired channel

The throughput shall be ≥ 95%

Table 7.7.5-1: General intermodulation requirement

|-----------------------|------------------------------------|---------------------------------------------|---------------------------------|
| Base Station type | Wanted Signal mean power (dBm) | Mean power of interfering signals (dBm) | Type of interfering signals |
| Wide Area BS | PREFSENS + 6 dB | -52 | |
| Medium Range BS | PREFSENS + 6 dB | -47 | See table 7.7.5-2 |

Table 7.7.5-2: Interfering signals for intermodulation requirement

|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| BS channel bandwidth of the lowest/highest carrier received (MHz) | Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz) | Type of interfering signal (Note 3) |
| 100 | ±7.48 | CW |
| | ±25 | 20 MHz DFT-s-OFDM NR signal, (Note 2) |
| NOTE 1: For the 15 kHz subcarrier spacing, the number of RB is 25. For the 30 kHz subcarrier spacing, the number of RB is 10. NOTE 2: For the 15 kHz subcarrier spacing, the number of RB is 100. For the 30 kHz subcarrier spacing, the number of RB is 50. For the 60 kHz subcarrier spacing, the number of RB is 24. NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge. |||

7.8 In-channel selectivity

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the antenna connector

ACS是相邻信道的选择性,ICS就是载波内PRB的选择性,wanted signal摆在中心频点两边,interfering signal摆在另一边

Table 7. 8 . 5 -1: Wide Area BS in-channel selectivity

|-----------------------------|------------------------|---------------------------|-----------------|----------------------------|----------------------------|-----------------------------|------------------------------------------|
| NR channel bandwidth | Subcarrier spacing | Reference measurement | Wanted signal mean power (dBm) ||| Interfering signal mean | Type of interfering signal |
| (MHz) | (kHz) | channel | f ≤ 3.0 GHz | 3.0 GHz < f ≤ 4.2 GHz | 4.2 GHz < f ≤ 6.0 GHz | power (dBm) | |
| 40, 50, 60, 70, 80, 90, 100 | 30 | G-FR1-A1-5 | -91.2 | -90.8 | -90.5 | -71.4 | DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs |
| NOTE: Wanted and interfering signal are placed adjacently around Fc, where the Fc is defined for BS channel bandwidth of the wanted signalaccording to the table 5.4.2.2-1 in TS 38.104 [2]. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal. ||||||||

相关推荐
智联物联10 小时前
工业路由器赋能智慧电力储能柜实时通讯,构建电力智能化新生态
5g·工业路由器·智慧电力·数据传输·实时监控·智能储能柜·物联网模块
安卓机器13 天前
rom定制系列------红米note11 5G版 MTK芯片强解bl锁修复bug 官方系统 面具root批量线刷版
5g·bug
alex888613 天前
电子制造智能化转型:MES如何解决工艺复杂、质量追溯与供应链协同
人工智能·科技·5g·云计算·社交电子·能源·制造
我爱C编程13 天前
基于强化学习的5G通信网络基站资源动态分配策略matlab性能仿真
5g·matlab·强化学习·基站资源动态分配
移远通信15 天前
移远通信 × 紫光展锐,推动FWA “5G+AI”新体验
5g
hao_wujing15 天前
CWGAN-GP 增强型 CAE 在非 IID 数据集中用于 5G-NR 干扰检测
5g·网络安全
未来智慧谷15 天前
全球首款5G-A人形机器人亮相,通信与AI融合进入新阶段
人工智能·5g·机器人
Clownseven15 天前
云计算与5G:如何利用5G网络优化云平台的性能
网络·5g·云计算
alex888615 天前
介绍一款免费MES、开源MES系统、MES源码
java·5g·开源·产品运营·软件构建·制造·源代码管理
灵动小溪15 天前
5G modem开发
5g