python实现门房人脸识别

实现门房人脸识别功能涉及硬件和软件两个方面。下面是一个简单的示例代码,展示了如何使用 Python 和 OpenCV 库进行人头识别,并输出高低电平信号。

请注意,这只是一个基础示例,你可能需要根据具体硬件和需求进行适当的调整。

python 复制代码
import cv2
import RPi.GPIO as GPIO

# 设置GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.OUT)  # 输出引脚

# 加载人头识别分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 打开摄像头
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()

    # 转换为灰度图像
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 检测人头
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

    if len(faces) > 0:
        # 识别到人头,输出高电平
        GPIO.output(11, GPIO.HIGH)
    else:
        # 未识别到人头,输出低电平
        GPIO.output(11, GPIO.LOW)

    # 显示图像
    cv2.imshow('Face Detection', frame)

    # 退出循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 清理GPIO
GPIO.cleanup()

# 关闭摄像头
cap.release()
cv2.destroyAllWindows()

在这个示例中,我们使用 RPi.GPIO 库来控制树莓派的 GPIO 引脚。根据需要,你可以将 11 引脚替换为实际使用的引脚编号。

代码中使用了 OpenCV 的 haarcascade_frontalface_default.xml 分类器来进行人头检测。你需要确保该 XML 文件与代码在同一目录下,或者根据实际路径进行修改。

代码通过不断读取摄像头的帧图像,并将其转换为灰度图像。然后使用分类器检测人头,如果检测到人头,就输出高电平信号;如果没有检测到人头,就输出低电平信号。

最后,代码显示摄像头的图像,并在按下 'q' 键时退出循环。

请根据具体硬件和需求进行适当的修改和调整,比如调整人头识别的参数、设置串口协议输出等。

为了优化和封装以上的代码,可以创建一个名为 FaceDetector 的类,并将人头检测和 GPIO 控制的逻辑封装在其中。以下是一个优化封装后的示例代码:

python 复制代码
import cv2
import RPi.GPIO as GPIO

class FaceDetector:
    def __init__(self, gpio_pin):
        self.gpio_pin = gpio_pin
        self.face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        self.cap = None

    def initialize(self):
        GPIO.setmode(GPIO.BOARD)
        GPIO.setup(self.gpio_pin, GPIO.OUT)
        self.cap = cv2.VideoCapture(0)

    def detect_faces(self):
        ret, frame = self.cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = self.face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
        return len(faces) > 0

    def control_gpio(self, state):
        GPIO.output(self.gpio_pin, state)

    def run(self):
        while True:
            if self.detect_faces():
                self.control_gpio(GPIO.HIGH)
            else:
                self.control_gpio(GPIO.LOW)

            cv2.imshow('Face Detection', frame)

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    def cleanup(self):
        GPIO.cleanup()
        self.cap.release()
        cv2.destroyAllWindows()

# 使用示例
detector = FaceDetector(11)
detector.initialize()
detector.run()
detector.cleanup()

通过将人头检测和 GPIO 控制的逻辑封装在 FaceDetector 类中,可以更好地组织代码并提高代码的可读性和可维护性。

FaceDetector 类中,initialize 方法用于初始化 GPIO 和摄像头的设置,detect_faces 方法用于检测人头,control_gpio 方法用于控制 GPIO 输出,run 方法用于运行人头检测,cleanup 方法用于清理 GPIO 和释放摄像头资源。

使用示例中的代码,你只需要实例化 FaceDetector 类,并调用相应的方法来运行人头识别。这样可以更方便地实现门房人脸识别,并且代码更加清晰易懂。

相关推荐
zmd-zk3 分钟前
flink学习(2)——wordcount案例
大数据·开发语言·学习·flink
好奇的菜鸟7 分钟前
Go语言中的引用类型:指针与传递机制
开发语言·后端·golang
Alive~o.016 分钟前
Go语言进阶&依赖管理
开发语言·后端·golang
花海少爷18 分钟前
第十章 JavaScript的应用课后习题
开发语言·javascript·ecmascript
手握风云-19 分钟前
数据结构(Java版)第二期:包装类和泛型
java·开发语言·数据结构
喵叔哟39 分钟前
重构代码中引入外部方法和引入本地扩展的区别
java·开发语言·重构
尘浮生1 小时前
Java项目实战II基于微信小程序的电影院买票选座系统(开发文档+数据库+源码)
java·开发语言·数据库·微信小程序·小程序·maven·intellij-idea
hopetomorrow1 小时前
学习路之PHP--使用GROUP BY 发生错误 SELECT list is not in GROUP BY clause .......... 解决
开发语言·学习·php
小牛itbull1 小时前
ReactPress vs VuePress vs WordPress
开发语言·javascript·reactpress
请叫我欧皇i1 小时前
html本地离线引入vant和vue2(详细步骤)
开发语言·前端·javascript