【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

一个问题出现了,我们首先要描述这个问题,然后分析问题出现的原因,找到原因后提出解决方案。废话不多说,直接上定义,然后通过回归和分类任务的例子来做解释。

一、什么是欠拟合和过拟合?

(1)欠拟合的定义

欠拟合(Underfitting)指的是模型在训练过程中未能捕捉到数据集中的有效规律或模式,导致模型过于简单,无法正确预测结果。

(2)过拟合的定义

拟合(Overfitting)是指模型在训练集上表现很好,但在测试集(未见过的数据)上性能表现很差。也就是说,模型"过度学习"了训练数据,把数据中的噪声也学习了进来,导致它失去了对未来数据的预测能力。

(3)良好拟合的定义

良好拟合指的是模型在训练集上有较低的误差,同时在测试集上也有很好的表现。也就是说,模型既没有过度地学习训练数据中的噪声,也成功捕获了数据的规律或模式,以至于能进行准确的预测。这就需要在模型的复杂性和简单性之间找到一个恰当的平衡。

注:噪声(这里只说在输入数据中)就是一些无法对你要解决的任务比如回归任务起作用的输入值,它是数据误差或异常值。

二、造成欠拟合与过拟合的可能原因?

(1)造成欠拟合的可能原因

  • 模型过于简单:模型结构过于简单,例如线性模型对于复杂非线性数据的拟合,模型就可能无法捕获到数据中的所有关系
  • 特征选择不当:学习算法的复杂度不足,例如特征无法很好地代表预测的目标变量,或者特征数量太少
  • 训练时间不足:如果模型的训练时间不足,或者训练步骤太少,那么模型可能还没有足够的机会"学习"到数据中的规律
  • 学习率设置不合理:导致模型没有充分学习数据集的特性

(2)造成过拟合的可能原因

  • 模型过于复杂:模型的复杂度远高于数据本身的复杂度,模型可能会"学习"到数据中的噪声,而没有捕获到真正的规律
  • 训练数据量不足:训练数据量相对模型复杂度过小,使得模型有机会过度学习训练数据中的噪声或特殊情况
  • 数据噪声过大:模型可能会错误地将这些噪声视为有效的信号进行学习

三、怎么解决欠拟合与过拟合问题?

(1)解决欠拟合问题的方法

  • 增加模型复杂度:用更多的特征量和参数去构建模型
  • 增加新特征:通过特征工程构建更多有意义的特征,增强模型对数据的表达能力
  • 增大学习率:适当提高学习率,让模型更快地遍历参数空间,寻找更好的拟合效果

(2)解决过拟合问题的方法

  • 增加训练样本:这有助于模型的泛化能力,并且可以防止模型记住所有单个样本
  • 进行特征选择:只选择最合适的特征进行训练,但缺点是模型选择性的丢失了训练集的细节
  • 正则化:如L1或L2正则化,可以惩罚模型中大的参数值,限制模型的复杂度的同时又保证具有训练集的所以细节
相关推荐
灵途科技16 分钟前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
IT90901 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
Small___ming2 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace2 小时前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简2 小时前
机器学习-回归分析概述
人工智能·机器学习
王哈哈^_^2 小时前
【数据集】【YOLO】目标检测游泳数据集 4481 张,溺水数据集,YOLO河道、海滩游泳识别算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·分类·视觉检测
桂花饼2 小时前
Sora 2:从视频生成到世界模拟,OpenAI的“终极游戏”
人工智能·aigc·openai·sora 2
wwlsm_zql3 小时前
荣耀YOYO智能体:自动执行与任务规划,开启智能生活新篇章
人工智能·生活
科学计算技术爱好者3 小时前
未来已来:AI 如何在 3 年内重塑工作、教育与生活
人工智能·ai