【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

一个问题出现了,我们首先要描述这个问题,然后分析问题出现的原因,找到原因后提出解决方案。废话不多说,直接上定义,然后通过回归和分类任务的例子来做解释。

一、什么是欠拟合和过拟合?

(1)欠拟合的定义

欠拟合(Underfitting)指的是模型在训练过程中未能捕捉到数据集中的有效规律或模式,导致模型过于简单,无法正确预测结果。

(2)过拟合的定义

拟合(Overfitting)是指模型在训练集上表现很好,但在测试集(未见过的数据)上性能表现很差。也就是说,模型"过度学习"了训练数据,把数据中的噪声也学习了进来,导致它失去了对未来数据的预测能力。

(3)良好拟合的定义

良好拟合指的是模型在训练集上有较低的误差,同时在测试集上也有很好的表现。也就是说,模型既没有过度地学习训练数据中的噪声,也成功捕获了数据的规律或模式,以至于能进行准确的预测。这就需要在模型的复杂性和简单性之间找到一个恰当的平衡。

注:噪声(这里只说在输入数据中)就是一些无法对你要解决的任务比如回归任务起作用的输入值,它是数据误差或异常值。

二、造成欠拟合与过拟合的可能原因?

(1)造成欠拟合的可能原因

  • 模型过于简单:模型结构过于简单,例如线性模型对于复杂非线性数据的拟合,模型就可能无法捕获到数据中的所有关系
  • 特征选择不当:学习算法的复杂度不足,例如特征无法很好地代表预测的目标变量,或者特征数量太少
  • 训练时间不足:如果模型的训练时间不足,或者训练步骤太少,那么模型可能还没有足够的机会"学习"到数据中的规律
  • 学习率设置不合理:导致模型没有充分学习数据集的特性

(2)造成过拟合的可能原因

  • 模型过于复杂:模型的复杂度远高于数据本身的复杂度,模型可能会"学习"到数据中的噪声,而没有捕获到真正的规律
  • 训练数据量不足:训练数据量相对模型复杂度过小,使得模型有机会过度学习训练数据中的噪声或特殊情况
  • 数据噪声过大:模型可能会错误地将这些噪声视为有效的信号进行学习

三、怎么解决欠拟合与过拟合问题?

(1)解决欠拟合问题的方法

  • 增加模型复杂度:用更多的特征量和参数去构建模型
  • 增加新特征:通过特征工程构建更多有意义的特征,增强模型对数据的表达能力
  • 增大学习率:适当提高学习率,让模型更快地遍历参数空间,寻找更好的拟合效果

(2)解决过拟合问题的方法

  • 增加训练样本:这有助于模型的泛化能力,并且可以防止模型记住所有单个样本
  • 进行特征选择:只选择最合适的特征进行训练,但缺点是模型选择性的丢失了训练集的细节
  • 正则化:如L1或L2正则化,可以惩罚模型中大的参数值,限制模型的复杂度的同时又保证具有训练集的所以细节
相关推荐
哈哈你是真的厉害1 分钟前
CANN生态核心算子库合集:赋能AIGC多模态落地的全链路算力支撑
人工智能·aigc·cann
imbackneverdie2 分钟前
2026国自然申请书模板大改版,科研人员如何应对?
人工智能·自然语言处理·aigc·科研·学术·国自然·国家自然科学基金
哈哈你是真的厉害2 分钟前
驾驭万亿参数 MoE:深度剖析 CANN ops-transformer 算子库的“核武库”
人工智能·深度学习·aigc·transformer
忆~遂愿2 分钟前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
喵叔哟10 分钟前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
玄同76512 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
L、21812 分钟前
CANN 内存管理深度解析:高效利用显存,突破 AI 推理瓶颈
人工智能
聊聊科技14 分钟前
原创音乐人使用AI编曲软件制作伴奏,编曲用什么音源好听
人工智能
爱吃烤鸡翅的酸菜鱼14 分钟前
CANN ops-nn卷积算子深度解析与性能优化
人工智能·性能优化·aigc
向哆哆14 分钟前
CANN生态安全保障:cann-security-module技术解读
人工智能·安全·cann