ES网格聚合

参考地址 Geohash 网格聚合 | Elasticsearch: 权威指南 | Elastic

es接口测试如下:

复制代码
DELETE /museums

#创建索引
PUT  /museums
{
	"mappings": {
		"properties": {
			"location": {
				"type": "geo_point"
			}
		}
	}
}

#添加数据
POST /museums/_bulk?refresh
{"index":{"_id":1}}
{"location": {"lon":"52.374081","lat": "4.912350"}, "name": "NEMO Science Museum"}
{"index":{"_id":2}}
{"location": {"lon":"52.369219","lat": "4.901618"}, "name": "Museum HetRembrandthuis"}
{"index":{"_id":3}}
{"location": {"lon":"52.371667","lat": "4.914722"}, "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":4}}
{"location": {"lon":"51.222900","lat": "4.405200"}, "name": "Letterenhuis"}
{"index":{"_id":5}}
{"location":  {"lon":"48.861111","lat": "2.336389"}, "name": "Musée du Louvre"}
{"index":{"_id":6}}
{"location": {"lon":"48.860000","lat": "2.327000"}, "name": "Musée d'Orsay"}


#查询数据
GET /museums/_search
{
  "query": {
    "match_all": {}
  }
}


#查询数据,精度 1-8  越大地图桶越小,分的组越多
POST /museums/_search?size=0
{
	"aggregations": {
		"large-grid": {
			"geohash_grid": {
				"field": "location",
				"precision": 3
			}
		}
		
	}
}



#查询数据,精度 1-8  越大地图桶越小,分的组越多
GET /museums/_search?size=0
{
	  "aggs": {
    "large-grid": {
      "geohash_grid": {
        "field":     "location",
        "precision": 3
      },
      "aggs": {
        "cell": { 
          "geo_bounds": {
            "field": "location"
          }
        }
      }
    }
  }
}


#指定矩形内查询数据,精度 1-8  越大地图桶越小,分的组越多
GET /museums/_search?size=3
{
  "query": {
    "constant_score": {
      "filter": {
        "geo_bounding_box": {
          "location": {
            "top_left": {
              "lon": "52.374081",
               "lat": "5.912350"
            },
            "bottom_right": {
              "lon": "52.374081",
              "lat": "4.912350"
            }
          }
        }
      }
    }
    
  }, 
	  "aggs": {
      "large-grid": {
        "geohash_grid": {
        "field":     "location",
        "precision": 5
      },
      "aggs": {
        "cell": { 
          "geo_bounds": {
            "field": "location"
          }
        }
      }
    }
  }
}


#指定桶的key查询数据,精度 1-8  越大地图桶越小,分的组越多
GET /museums/_search?size=3
{
  "query": {
    "constant_score": {
      "filter": {
        "geo_bounding_box": {
          "location": {
            "top_left": "t0v",
            "bottom_right": "t0v"
          }
        }
      }
    }
    
  }, 
	  "aggs": {
      "large-grid": {
        "geohash_grid": {
        "field":     "location",
        "precision": 5
      },
      "aggs": {
        "cell": { 
          "geo_bounds": {
            "field": "location"
          }
        }
      }
    }
  }
}
相关推荐
Hello World......9 分钟前
Java求职面试揭秘:从Spring到微服务的技术挑战
大数据·hadoop·spring boot·微服务·spark·java面试·互联网大厂
数据与人工智能律师6 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
fatesunlove7 小时前
知识图谱重构电商搜索:下一代AI搜索引擎的底层逻辑
搜索引擎·ai·知识图谱
小生凡一7 小时前
搜索引擎工作原理|倒排索引|query改写|CTR点击率预估|爬虫
爬虫·搜索引擎
一只专注api接口开发的技术猿8 小时前
企业级电商数据对接:1688 商品详情 API 接口开发与优化实践
大数据·前端·爬虫
今天我又学废了9 小时前
Spark,SparkSQL操作Mysql, 创建数据库和表
大数据·mysql·spark
杰克逊的日记11 小时前
Flink运维要点
大数据·运维·flink
markuszhang15 小时前
Elasticsearch 官网阅读之 Term-level Queries
大数据·elasticsearch·搜索引擎
帝锦_li15 小时前
ElasticSearch
elasticsearch·搜索引擎
Hello World......16 小时前
Java求职面试:从核心技术到大数据与AI的场景应用
大数据·java面试·技术栈·互联网大厂·ai服务