使用代码取大量2*2像素图片各通道均值,存于Excel文件中。

任务是取下图RGB各个通道的均值及标签(R, G,B,Label),其中标签由图片存放的文件夹标识。由于2*2像素图片较多,所以将结果放置于Excel表格中,之后使用SVM对他们进行分类。
python 复制代码
from PIL import Image
import os
import pandas as pd

# 输入文件夹路径
input_folder = "./data/1"

# 获取文件夹中所有图片文件的路径
image_files = [f for f in os.listdir(input_folder) if f.endswith('.png') or f.endswith('.jpg')]

# 存储每张图片的信息
image_data = []

# 遍历每张图片
for image_file in image_files:
    # 构建图片文件的完整路径
    image_path = os.path.join(input_folder, image_file)

    # 打开图片
    image = Image.open(image_path)

    # 获取所有像素的RGB或RGBA值,具体取决于图像模式
    pixels = list(image.getdata())

    # 将RGB或RGBA值拆分成各个通道
    if image.mode == 'RGB':
        r_values, g_values, b_values = zip(*pixels)
    elif image.mode == 'RGBA':
        r_values, g_values, b_values, _ = zip(*pixels)
    else:
        raise ValueError("Unsupported image mode: {}".format(image.mode))

    # 计算每个通道的均值
    r_mean = sum(r_values) / len(r_values)
    g_mean = sum(g_values) / len(g_values)
    b_mean = sum(b_values) / len(b_values)

    # 存储图片信息
    image_info = {'Filename': image_file, 'R_mean': r_mean, 'G_mean': g_mean, 'B_mean': b_mean}

    # 添加到图片数据列表
    image_data.append(image_info)

# 创建Pandas数据框
df = pd.DataFrame(image_data)

# 将数据框写入Excel文件
output_excel_path = "./data/output.xlsx"
df.to_excel(output_excel_path, index=False)

print(f"数据已写入到 {output_excel_path}")

结果(文件名抽查核对之后,改为了Label列)

相关推荐
摘取一颗天上星️3 分钟前
深入解析机器学习的心脏:损失函数及其背后的奥秘
人工智能·深度学习·机器学习·损失函数·梯度下降
远方160910 分钟前
20-Oracle 23 ai free Database Sharding-特性验证
数据库·人工智能·oracle
znhy605812 分钟前
智能终端与边缘计算按章复习
人工智能·边缘计算
薛定谔的算法15 分钟前
《盗梦空间》与JavaScript中的递归
算法
__Benco18 分钟前
OpenHarmony平台驱动使用(十五),SPI
人工智能·驱动开发·harmonyos
Listennnn19 分钟前
AI系统的构建
人工智能·系统架构
新智元22 分钟前
全球 30 名顶尖数学家秘密集会围剿 AI,当场破防!惊呼已接近数学天才
人工智能·openai
楽码27 分钟前
AI决策树:整理繁杂问题的简单方法
人工智能·后端·openai
星辰大海的精灵31 分钟前
基于Dify+MCP实现通过微信发送天气信息给好友
人工智能·后端·python
ReturnOfMars33 分钟前
AI本地批量生图Agent-Jaaz体验,确实强
人工智能