使用代码取大量2*2像素图片各通道均值,存于Excel文件中。

任务是取下图RGB各个通道的均值及标签(R, G,B,Label),其中标签由图片存放的文件夹标识。由于2*2像素图片较多,所以将结果放置于Excel表格中,之后使用SVM对他们进行分类。
python 复制代码
from PIL import Image
import os
import pandas as pd

# 输入文件夹路径
input_folder = "./data/1"

# 获取文件夹中所有图片文件的路径
image_files = [f for f in os.listdir(input_folder) if f.endswith('.png') or f.endswith('.jpg')]

# 存储每张图片的信息
image_data = []

# 遍历每张图片
for image_file in image_files:
    # 构建图片文件的完整路径
    image_path = os.path.join(input_folder, image_file)

    # 打开图片
    image = Image.open(image_path)

    # 获取所有像素的RGB或RGBA值,具体取决于图像模式
    pixels = list(image.getdata())

    # 将RGB或RGBA值拆分成各个通道
    if image.mode == 'RGB':
        r_values, g_values, b_values = zip(*pixels)
    elif image.mode == 'RGBA':
        r_values, g_values, b_values, _ = zip(*pixels)
    else:
        raise ValueError("Unsupported image mode: {}".format(image.mode))

    # 计算每个通道的均值
    r_mean = sum(r_values) / len(r_values)
    g_mean = sum(g_values) / len(g_values)
    b_mean = sum(b_values) / len(b_values)

    # 存储图片信息
    image_info = {'Filename': image_file, 'R_mean': r_mean, 'G_mean': g_mean, 'B_mean': b_mean}

    # 添加到图片数据列表
    image_data.append(image_info)

# 创建Pandas数据框
df = pd.DataFrame(image_data)

# 将数据框写入Excel文件
output_excel_path = "./data/output.xlsx"
df.to_excel(output_excel_path, index=False)

print(f"数据已写入到 {output_excel_path}")

结果(文件名抽查核对之后,改为了Label列)

相关推荐
Dontla12 分钟前
Rust泛型系统类型推导原理(Rust类型推导、泛型类型推导、泛型推导)为什么在某些情况必须手动添加泛型特征约束?(泛型trait约束)
开发语言·算法·rust
Ttang2318 分钟前
Leetcode:118. 杨辉三角——Java数学法求解
算法·leetcode
喜欢打篮球的普通人19 分钟前
rust模式和匹配
java·算法·rust
java小吕布32 分钟前
Java中的排序算法:探索与比较
java·后端·算法·排序算法
正义的彬彬侠40 分钟前
sklearn.datasets中make_classification函数
人工智能·python·机器学习·分类·sklearn
ctrey_41 分钟前
2024-11-13 学习人工智能的Day26 sklearn(2)
人工智能·学习·sklearn
安静的_显眼包O_o42 分钟前
from sklearn.preprocessing import Imputer.处理缺失数据的工具
人工智能·python·sklearn
安静的_显眼包O_o1 小时前
from sklearn.feature_selection import VarianceThreshold.移除低方差的特征来减少数据集中的特征数量
人工智能·python·sklearn
AI服务老曹1 小时前
不仅能够实现前后场的简单互动,而且能够实现人机结合,最终实现整个巡检流程的标准化的智慧园区开源了
大数据·人工智能·深度学习·物联网·开源