使用代码取大量2*2像素图片各通道均值,存于Excel文件中。

任务是取下图RGB各个通道的均值及标签(R, G,B,Label),其中标签由图片存放的文件夹标识。由于2*2像素图片较多,所以将结果放置于Excel表格中,之后使用SVM对他们进行分类。
python 复制代码
from PIL import Image
import os
import pandas as pd

# 输入文件夹路径
input_folder = "./data/1"

# 获取文件夹中所有图片文件的路径
image_files = [f for f in os.listdir(input_folder) if f.endswith('.png') or f.endswith('.jpg')]

# 存储每张图片的信息
image_data = []

# 遍历每张图片
for image_file in image_files:
    # 构建图片文件的完整路径
    image_path = os.path.join(input_folder, image_file)

    # 打开图片
    image = Image.open(image_path)

    # 获取所有像素的RGB或RGBA值,具体取决于图像模式
    pixels = list(image.getdata())

    # 将RGB或RGBA值拆分成各个通道
    if image.mode == 'RGB':
        r_values, g_values, b_values = zip(*pixels)
    elif image.mode == 'RGBA':
        r_values, g_values, b_values, _ = zip(*pixels)
    else:
        raise ValueError("Unsupported image mode: {}".format(image.mode))

    # 计算每个通道的均值
    r_mean = sum(r_values) / len(r_values)
    g_mean = sum(g_values) / len(g_values)
    b_mean = sum(b_values) / len(b_values)

    # 存储图片信息
    image_info = {'Filename': image_file, 'R_mean': r_mean, 'G_mean': g_mean, 'B_mean': b_mean}

    # 添加到图片数据列表
    image_data.append(image_info)

# 创建Pandas数据框
df = pd.DataFrame(image_data)

# 将数据框写入Excel文件
output_excel_path = "./data/output.xlsx"
df.to_excel(output_excel_path, index=False)

print(f"数据已写入到 {output_excel_path}")

结果(文件名抽查核对之后,改为了Label列)

相关推荐
夕小瑶3 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<6 分钟前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
CoderCodingNo13 分钟前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
那个村的李富贵19 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器22 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆23 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow72424423 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
大闲在人23 分钟前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋26 分钟前
443. 压缩字符串-python-双指针
算法
子榆.27 分钟前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow