深入浅出 diffusion(4):pytorch 实现简单 diffusion

1. 训练和采样流程

2. 无条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(up1 + temb1, down2)
        up3 = self.up2(up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
    def forward(self, x):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, _ts / self.n_T))
 
    def sample(self, n_sample, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
 
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        out = self.sampler.sample(tot_num_samples, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()

3. 有条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256, n_classes=10):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
        self.conditionembed1 = EmbedFC(n_classes, 2 * n_feat)
        self.conditionembed2 = EmbedFC(n_classes, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, c, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param c: contition向量
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
        cemb1 = self.conditionembed1(c).view(-1, self.n_feat * 2, 1, 1)
        cemb2 = self.conditionembed2(c).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(cemb1 * up1 + temb1, down2)
        up3 = self.up2(cemb2 * up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
 
    def forward(self, x, c):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, c, _ts / self.n_T))
 
    def sample(self, n_sample, c, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, c, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
                labels = F.one_hot(labels, num_classes=10).float()
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images, labels)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        labels = F.one_hot(torch.Tensor(np.repeat(np.arange(10), 10)).to(torch.int64), num_classes=10).to(self.device).float()
        out = self.sampler.sample(tot_num_samples, labels, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()
相关推荐
IT古董17 分钟前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee19 分钟前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa19 分钟前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐20 分钟前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空33 分钟前
Python调用open ai接口
人工智能·python
睡觉狂魔er34 分钟前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
jasmine s42 分钟前
Pandas
开发语言·python
郭wes代码42 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7241 小时前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf1 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python