深入浅出 diffusion(4):pytorch 实现简单 diffusion

1. 训练和采样流程

2. 无条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(up1 + temb1, down2)
        up3 = self.up2(up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
    def forward(self, x):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, _ts / self.n_T))
 
    def sample(self, n_sample, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
 
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        out = self.sampler.sample(tot_num_samples, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()

3. 有条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256, n_classes=10):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
        self.conditionembed1 = EmbedFC(n_classes, 2 * n_feat)
        self.conditionembed2 = EmbedFC(n_classes, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, c, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param c: contition向量
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
        cemb1 = self.conditionembed1(c).view(-1, self.n_feat * 2, 1, 1)
        cemb2 = self.conditionembed2(c).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(cemb1 * up1 + temb1, down2)
        up3 = self.up2(cemb2 * up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
 
    def forward(self, x, c):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, c, _ts / self.n_T))
 
    def sample(self, n_sample, c, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, c, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
                labels = F.one_hot(labels, num_classes=10).float()
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images, labels)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        labels = F.one_hot(torch.Tensor(np.repeat(np.arange(10), 10)).to(torch.int64), num_classes=10).to(self.device).float()
        out = self.sampler.sample(tot_num_samples, labels, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()
相关推荐
好悬给我拽开线12 分钟前
【】AI八股-神经网络相关
人工智能·深度学习·神经网络
2401_858120264 小时前
探索sklearn文本向量化:从词袋到深度学习的转变
开发语言·python·机器学习
江畔柳前堤5 小时前
CV01_相机成像原理与坐标系之间的转换
人工智能·深度学习·数码相机·机器学习·计算机视觉·lstm
qq_526099135 小时前
为什么要在成像应用中使用图像采集卡?
人工智能·数码相机·计算机视觉
码上飞扬5 小时前
深度解析:机器学习与深度学习的关系与区别
人工智能·深度学习·机器学习
bigbearxyz5 小时前
Java实现图片的垂直方向拼接
java·windows·python
立秋67895 小时前
使用Python绘制堆积柱形图
开发语言·python
jOkerSdl6 小时前
第三十章 方法大全(Python)
python
super_Dev_OP6 小时前
Web3 ETF的主要功能
服务器·人工智能·信息可视化·web3
Sui_Network6 小时前
探索Sui的面向对象模型和Move编程语言
大数据·人工智能·学习·区块链·智能合约