深入浅出 diffusion(4):pytorch 实现简单 diffusion

1. 训练和采样流程

2. 无条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(up1 + temb1, down2)
        up3 = self.up2(up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
    def forward(self, x):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, _ts / self.n_T))
 
    def sample(self, n_sample, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
 
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        out = self.sampler.sample(tot_num_samples, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()

3. 有条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256, n_classes=10):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
        self.conditionembed1 = EmbedFC(n_classes, 2 * n_feat)
        self.conditionembed2 = EmbedFC(n_classes, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, c, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param c: contition向量
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
        cemb1 = self.conditionembed1(c).view(-1, self.n_feat * 2, 1, 1)
        cemb2 = self.conditionembed2(c).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(cemb1 * up1 + temb1, down2)
        up3 = self.up2(cemb2 * up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
 
    def forward(self, x, c):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, c, _ts / self.n_T))
 
    def sample(self, n_sample, c, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, c, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
                labels = F.one_hot(labels, num_classes=10).float()
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images, labels)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        labels = F.one_hot(torch.Tensor(np.repeat(np.arange(10), 10)).to(torch.int64), num_classes=10).to(self.device).float()
        out = self.sampler.sample(tot_num_samples, labels, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()
相关推荐
m0_650108241 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼1 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试1 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
孫治AllenSun1 小时前
【算法】图相关算法和递归
windows·python·算法
唐兴通个人2 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力2 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector3 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会3 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥3 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone4 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia