深入浅出 diffusion(4):pytorch 实现简单 diffusion

1. 训练和采样流程

2. 无条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(up1 + temb1, down2)
        up3 = self.up2(up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
    def forward(self, x):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, _ts / self.n_T))
 
    def sample(self, n_sample, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
 
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        out = self.sampler.sample(tot_num_samples, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()

3. 有条件实现

python 复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
 
 
class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()
        '''
        standard ResNet style convolutional block
        '''
        self.same_channels = in_channels==out_channels
        self.is_res = is_res
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.GELU(),
        )
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.is_res:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            # this adds on correct residual in case channels have increased
            if self.same_channels:
                out = x + x2
            else:
                out = x1 + x2
            return out / 1.414
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2
 
 
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        '''
        process and downscale the image feature maps
        '''
        layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        return self.model(x)
 
 
class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        '''
        process and upscale the image feature maps
        '''
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x, skip):
        x = torch.cat((x, skip), 1)
        x = self.model(x)
        return x
 
 
class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        generic one layer FC NN for embedding things  
        '''
        self.input_dim = input_dim
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        self.model = nn.Sequential(*layers)
 
    def forward(self, x):
        x = x.view(-1, self.input_dim)
        return self.model(x)
class Unet(nn.Module):
    def __init__(self, in_channels, n_feat=256, n_classes=10):
        super(Unet, self).__init__()
 
        self.in_channels = in_channels
        self.n_feat = n_feat
 
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
 
        self.down1 = UnetDown(n_feat, n_feat)
        self.down2 = UnetDown(n_feat, 2 * n_feat)
 
        self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
 
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
        self.conditionembed1 = EmbedFC(n_classes, 2 * n_feat)
        self.conditionembed2 = EmbedFC(n_classes, 1 * n_feat)
 
        self.up0 = nn.Sequential(
            # nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
            nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7),  # otherwise just have 2*n_feat
            nn.GroupNorm(8, 2 * n_feat),
            nn.ReLU(),
        )
 
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)
        self.out = nn.Sequential(
            nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
            nn.GroupNorm(8, n_feat),
            nn.ReLU(),
            nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
        )
 
    def forward(self, x, c, t):
        '''
        输入加噪图像和对应的时间step,预测反向噪声的正态分布
        :param x: 加噪图像
        :param c: contition向量
        :param t: 对应step
        :return: 正态分布噪声
        '''
        x = self.init_conv(x)
        down1 = self.down1(x)
        down2 = self.down2(down1)
        hiddenvec = self.to_vec(down2)
 
        # embed time step
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
        cemb1 = self.conditionembed1(c).view(-1, self.n_feat * 2, 1, 1)
        cemb2 = self.conditionembed2(c).view(-1, self.n_feat, 1, 1)
 
        # 将上采样输出与step编码相加,输入到下一个上采样层
        up1 = self.up0(hiddenvec)
        up2 = self.up1(cemb1 * up1 + temb1, down2)
        up3 = self.up2(cemb2 * up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out
 
class DDPM(nn.Module):
    def __init__(self, model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.model = model.to(device)
 
        # register_buffer 可以提前保存alpha相关,节约时间
        for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)
 
        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()
 
    def ddpm_schedules(self, beta1, beta2, T):
        '''
        提前计算各个step的alpha,这里beta是线性变化
        :param beta1: beta的下限
        :param beta2: beta的下限
        :param T: 总共的step数
        '''
        assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
 
        beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
        sqrt_beta_t = torch.sqrt(beta_t)
        alpha_t = 1 - beta_t
        log_alpha_t = torch.log(alpha_t)
        alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
 
        sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
        oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
 
        sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
        mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
 
        return {
            "alpha_t": alpha_t,  # \alpha_t
            "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
            "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
            "alphabar_t": alphabar_t,  # \bar{\alpha_t}
            "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}} # 加噪标准差
            "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}  # 加噪均值
            "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
        }
 
    def forward(self, x, c):
        """
        训练过程中, 随机选择step和生成噪声
        """
        # 随机选择step
        _ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        # 随机生成正态分布噪声
        noise = torch.randn_like(x)  # eps ~ N(0, 1)
        # 加噪后的图像x_t
        x_t = (
                self.sqrtab[_ts, None, None, None] * x
                + self.sqrtmab[_ts, None, None, None] * noise
 
        )
 
        # 将unet预测的对应step的正态分布噪声与真实噪声做对比
        return self.loss_mse(noise, self.model(x_t, c, _ts / self.n_T))
 
    def sample(self, n_sample, c, size, device):
        # 随机生成初始噪声图片 x_T ~ N(0, 1)
        x_i = torch.randn(n_sample, *size).to(device)
        for i in range(self.n_T, 0, -1):
            t_is = torch.tensor([i / self.n_T]).to(device)
            t_is = t_is.repeat(n_sample, 1, 1, 1)
 
            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
 
            eps = self.model(x_i, c, t_is)
            x_i = x_i[:n_sample]
            x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
        return x_i
 
 
class ImageGenerator(object):
    def __init__(self):
        '''
        初始化,定义超参数、数据集、网络结构等
        '''
        self.epoch = 20
        self.sample_num = 100
        self.batch_size = 256
        self.lr = 0.0001
        self.n_T = 400
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.init_dataloader()
        self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
        self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
 
    def init_dataloader(self):
        '''
        初始化数据集和dataloader
        '''
        tf = transforms.Compose([
            transforms.ToTensor(),
        ])
        train_dataset = MNIST('./data/',
                              train=True,
                              download=True,
                              transform=tf)
        self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
        val_dataset = MNIST('./data/',
                            train=False,
                            download=True,
                            transform=tf)
        self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
 
    def train(self):
        self.sampler.train()
        print('训练开始!!')
        for epoch in range(self.epoch):
            self.sampler.model.train()
            loss_mean = 0
            for i, (images, labels) in enumerate(self.train_dataloader):
                images, labels = images.to(self.device), labels.to(self.device)
                labels = F.one_hot(labels, num_classes=10).float()
                # 将latent和condition拼接后输入网络
                loss = self.sampler(images, labels)
                loss_mean += loss.item()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            train_loss = loss_mean / len(self.train_dataloader)
            print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
            self.visualize_results(epoch)
 
    @torch.no_grad()
    def visualize_results(self, epoch):
        self.sampler.eval()
        # 保存结果路径
        output_path = 'results/Diffusion'
        if not os.path.exists(output_path):
            os.makedirs(output_path)
 
        tot_num_samples = self.sample_num
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
        labels = F.one_hot(torch.Tensor(np.repeat(np.arange(10), 10)).to(torch.int64), num_classes=10).to(self.device).float()
        out = self.sampler.sample(tot_num_samples, labels, (1, 28, 28), self.device)
        save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
 
 
 
if __name__ == '__main__':
    generator = ImageGenerator()
    generator.train()
相关推荐
weisian1515 分钟前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
Whoisshutiao6 分钟前
Python网安-zip文件暴力破解(仅供学习)
开发语言·python·网络安全
静心问道28 分钟前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
芷栀夏34 分钟前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
AI生存日记34 分钟前
AI 日报:阿里、字节等企业密集发布新技术,覆盖语音、图像与药物研发等领域
人工智能·华为云·语音识别·open ai大模型
龙潜月七37 分钟前
Selenium 自动化测试中跳过机器人验证的完整指南:能用
python·selenium·机器人
hjs_deeplearning1 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
kngines1 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
蓝婷儿2 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
Devil枫3 小时前
Kotlin扩展函数与属性
开发语言·python·kotlin