python
复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
'''
standard ResNet style convolutional block
'''
self.same_channels = in_channels==out_channels
self.is_res = is_res
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.is_res:
x1 = self.conv1(x)
x2 = self.conv2(x1)
# this adds on correct residual in case channels have increased
if self.same_channels:
out = x + x2
else:
out = x1 + x2
return out / 1.414
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
'''
process and downscale the image feature maps
'''
layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
'''
process and upscale the image feature maps
'''
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
x = torch.cat((x, skip), 1)
x = self.model(x)
return x
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
generic one layer FC NN for embedding things
'''
self.input_dim = input_dim
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
x = x.view(-1, self.input_dim)
return self.model(x)
class Unet(nn.Module):
def __init__(self, in_channels, n_feat=256):
super(Unet, self).__init__()
self.in_channels = in_channels
self.n_feat = n_feat
self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
self.down1 = UnetDown(n_feat, n_feat)
self.down2 = UnetDown(n_feat, 2 * n_feat)
self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
self.timeembed1 = EmbedFC(1, 2 * n_feat)
self.timeembed2 = EmbedFC(1, 1 * n_feat)
self.up0 = nn.Sequential(
# nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7), # otherwise just have 2*n_feat
nn.GroupNorm(8, 2 * n_feat),
nn.ReLU(),
)
self.up1 = UnetUp(4 * n_feat, n_feat)
self.up2 = UnetUp(2 * n_feat, n_feat)
self.out = nn.Sequential(
nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
nn.GroupNorm(8, n_feat),
nn.ReLU(),
nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
)
def forward(self, x, t):
'''
输入加噪图像和对应的时间step,预测反向噪声的正态分布
:param x: 加噪图像
:param t: 对应step
:return: 正态分布噪声
'''
x = self.init_conv(x)
down1 = self.down1(x)
down2 = self.down2(down1)
hiddenvec = self.to_vec(down2)
# embed time step
temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
# 将上采样输出与step编码相加,输入到下一个上采样层
up1 = self.up0(hiddenvec)
up2 = self.up1(up1 + temb1, down2)
up3 = self.up2(up2 + temb2, down1)
out = self.out(torch.cat((up3, x), 1))
return out
class DDPM(nn.Module):
def __init__(self, model, betas, n_T, device):
super(DDPM, self).__init__()
self.model = model.to(device)
# register_buffer 可以提前保存alpha相关,节约时间
for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.loss_mse = nn.MSELoss()
def ddpm_schedules(self, beta1, beta2, T):
'''
提前计算各个step的alpha,这里beta是线性变化
:param beta1: beta的下限
:param beta2: beta的下限
:param T: 总共的step数
'''
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}} # 加噪标准差
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}} # 加噪均值
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
def forward(self, x):
"""
训练过程中, 随机选择step和生成噪声
"""
# 随机选择step
_ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
# 随机生成正态分布噪声
noise = torch.randn_like(x) # eps ~ N(0, 1)
# 加噪后的图像x_t
x_t = (
self.sqrtab[_ts, None, None, None] * x
+ self.sqrtmab[_ts, None, None, None] * noise
)
# 将unet预测的对应step的正态分布噪声与真实噪声做对比
return self.loss_mse(noise, self.model(x_t, _ts / self.n_T))
def sample(self, n_sample, size, device):
# 随机生成初始噪声图片 x_T ~ N(0, 1)
x_i = torch.randn(n_sample, *size).to(device)
for i in range(self.n_T, 0, -1):
t_is = torch.tensor([i / self.n_T]).to(device)
t_is = t_is.repeat(n_sample, 1, 1, 1)
z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
eps = self.model(x_i, t_is)
x_i = x_i[:n_sample]
x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
return x_i
class ImageGenerator(object):
def __init__(self):
'''
初始化,定义超参数、数据集、网络结构等
'''
self.epoch = 20
self.sample_num = 100
self.batch_size = 256
self.lr = 0.0001
self.n_T = 400
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.init_dataloader()
self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
def init_dataloader(self):
'''
初始化数据集和dataloader
'''
tf = transforms.Compose([
transforms.ToTensor(),
])
train_dataset = MNIST('./data/',
train=True,
download=True,
transform=tf)
self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
val_dataset = MNIST('./data/',
train=False,
download=True,
transform=tf)
self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
def train(self):
self.sampler.train()
print('训练开始!!')
for epoch in range(self.epoch):
self.sampler.model.train()
loss_mean = 0
for i, (images, labels) in enumerate(self.train_dataloader):
images, labels = images.to(self.device), labels.to(self.device)
# 将latent和condition拼接后输入网络
loss = self.sampler(images)
loss_mean += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss = loss_mean / len(self.train_dataloader)
print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
self.visualize_results(epoch)
@torch.no_grad()
def visualize_results(self, epoch):
self.sampler.eval()
# 保存结果路径
output_path = 'results/Diffusion'
if not os.path.exists(output_path):
os.makedirs(output_path)
tot_num_samples = self.sample_num
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
out = self.sampler.sample(tot_num_samples, (1, 28, 28), self.device)
save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
if __name__ == '__main__':
generator = ImageGenerator()
generator.train()
python
复制代码
import torch, time, os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn.functional as F
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
'''
standard ResNet style convolutional block
'''
self.same_channels = in_channels==out_channels
self.is_res = is_res
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.is_res:
x1 = self.conv1(x)
x2 = self.conv2(x1)
# this adds on correct residual in case channels have increased
if self.same_channels:
out = x + x2
else:
out = x1 + x2
return out / 1.414
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
'''
process and downscale the image feature maps
'''
layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
'''
process and upscale the image feature maps
'''
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
x = torch.cat((x, skip), 1)
x = self.model(x)
return x
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
generic one layer FC NN for embedding things
'''
self.input_dim = input_dim
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
x = x.view(-1, self.input_dim)
return self.model(x)
class Unet(nn.Module):
def __init__(self, in_channels, n_feat=256, n_classes=10):
super(Unet, self).__init__()
self.in_channels = in_channels
self.n_feat = n_feat
self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
self.down1 = UnetDown(n_feat, n_feat)
self.down2 = UnetDown(n_feat, 2 * n_feat)
self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
self.timeembed1 = EmbedFC(1, 2 * n_feat)
self.timeembed2 = EmbedFC(1, 1 * n_feat)
self.conditionembed1 = EmbedFC(n_classes, 2 * n_feat)
self.conditionembed2 = EmbedFC(n_classes, 1 * n_feat)
self.up0 = nn.Sequential(
# nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7), # otherwise just have 2*n_feat
nn.GroupNorm(8, 2 * n_feat),
nn.ReLU(),
)
self.up1 = UnetUp(4 * n_feat, n_feat)
self.up2 = UnetUp(2 * n_feat, n_feat)
self.out = nn.Sequential(
nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
nn.GroupNorm(8, n_feat),
nn.ReLU(),
nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
)
def forward(self, x, c, t):
'''
输入加噪图像和对应的时间step,预测反向噪声的正态分布
:param x: 加噪图像
:param c: contition向量
:param t: 对应step
:return: 正态分布噪声
'''
x = self.init_conv(x)
down1 = self.down1(x)
down2 = self.down2(down1)
hiddenvec = self.to_vec(down2)
# embed time step
temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
cemb1 = self.conditionembed1(c).view(-1, self.n_feat * 2, 1, 1)
cemb2 = self.conditionembed2(c).view(-1, self.n_feat, 1, 1)
# 将上采样输出与step编码相加,输入到下一个上采样层
up1 = self.up0(hiddenvec)
up2 = self.up1(cemb1 * up1 + temb1, down2)
up3 = self.up2(cemb2 * up2 + temb2, down1)
out = self.out(torch.cat((up3, x), 1))
return out
class DDPM(nn.Module):
def __init__(self, model, betas, n_T, device):
super(DDPM, self).__init__()
self.model = model.to(device)
# register_buffer 可以提前保存alpha相关,节约时间
for k, v in self.ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.loss_mse = nn.MSELoss()
def ddpm_schedules(self, beta1, beta2, T):
'''
提前计算各个step的alpha,这里beta是线性变化
:param beta1: beta的下限
:param beta2: beta的下限
:param T: 总共的step数
'''
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1 # 生成beta1-beta2均匀分布的数组
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp() # alpha累乘
sqrtab = torch.sqrt(alphabar_t) # 根号alpha累乘
oneover_sqrta = 1 / torch.sqrt(alpha_t) # 1 / 根号alpha
sqrtmab = torch.sqrt(1 - alphabar_t) # 根号下(1-alpha累乘)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}} # 加噪标准差
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}} # 加噪均值
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
def forward(self, x, c):
"""
训练过程中, 随机选择step和生成噪声
"""
# 随机选择step
_ts = torch.randint(1, self.n_T + 1, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
# 随机生成正态分布噪声
noise = torch.randn_like(x) # eps ~ N(0, 1)
# 加噪后的图像x_t
x_t = (
self.sqrtab[_ts, None, None, None] * x
+ self.sqrtmab[_ts, None, None, None] * noise
)
# 将unet预测的对应step的正态分布噪声与真实噪声做对比
return self.loss_mse(noise, self.model(x_t, c, _ts / self.n_T))
def sample(self, n_sample, c, size, device):
# 随机生成初始噪声图片 x_T ~ N(0, 1)
x_i = torch.randn(n_sample, *size).to(device)
for i in range(self.n_T, 0, -1):
t_is = torch.tensor([i / self.n_T]).to(device)
t_is = t_is.repeat(n_sample, 1, 1, 1)
z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
eps = self.model(x_i, c, t_is)
x_i = x_i[:n_sample]
x_i = self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i]) + self.sqrt_beta_t[i] * z
return x_i
class ImageGenerator(object):
def __init__(self):
'''
初始化,定义超参数、数据集、网络结构等
'''
self.epoch = 20
self.sample_num = 100
self.batch_size = 256
self.lr = 0.0001
self.n_T = 400
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.init_dataloader()
self.sampler = DDPM(model=Unet(in_channels=1), betas=(1e-4, 0.02), n_T=self.n_T, device=self.device).to(self.device)
self.optimizer = optim.Adam(self.sampler.model.parameters(), lr=self.lr)
def init_dataloader(self):
'''
初始化数据集和dataloader
'''
tf = transforms.Compose([
transforms.ToTensor(),
])
train_dataset = MNIST('./data/',
train=True,
download=True,
transform=tf)
self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
val_dataset = MNIST('./data/',
train=False,
download=True,
transform=tf)
self.val_dataloader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
def train(self):
self.sampler.train()
print('训练开始!!')
for epoch in range(self.epoch):
self.sampler.model.train()
loss_mean = 0
for i, (images, labels) in enumerate(self.train_dataloader):
images, labels = images.to(self.device), labels.to(self.device)
labels = F.one_hot(labels, num_classes=10).float()
# 将latent和condition拼接后输入网络
loss = self.sampler(images, labels)
loss_mean += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss = loss_mean / len(self.train_dataloader)
print('epoch:{}, loss:{:.4f}'.format(epoch, train_loss))
self.visualize_results(epoch)
@torch.no_grad()
def visualize_results(self, epoch):
self.sampler.eval()
# 保存结果路径
output_path = 'results/Diffusion'
if not os.path.exists(output_path):
os.makedirs(output_path)
tot_num_samples = self.sample_num
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
labels = F.one_hot(torch.Tensor(np.repeat(np.arange(10), 10)).to(torch.int64), num_classes=10).to(self.device).float()
out = self.sampler.sample(tot_num_samples, labels, (1, 28, 28), self.device)
save_image(out, os.path.join(output_path, '{}.jpg'.format(epoch)), nrow=image_frame_dim)
if __name__ == '__main__':
generator = ImageGenerator()
generator.train()