Apache SeaTunnel 数据集成插件开发最新经验总结!

在Apache SeaTunnel的最新插件开发中,connector-v2 maxcompute 连接器实现了基于CatalogTable + SaveMode的新版本。

本文主要给大家分享了源端的关键改动包括弃用了过时的方法,改为通过CatalogTable实现数据传递。汇端则增加了对multi-table sink和saveMode接口的实现,并需手动管理auto service注解等经验方法!

此外,开发了特定的catalog以处理公共参数和客户端操作。

connector-v2 maxcompute 连接器

connector-v2 maxcompute 连接器实现了基于CatalogTable + SaveMode的新版本。

a) 源端的核心改动

  • 新版本中SeaTunnelSource继承自SatunnelPluginLifeCycle接口,其中包含了一个prepare方法。该方法原本用于初始化源端中的config参数,以及一些预处理工作,如删除数据、执行SQL等。
  • SeaTunnelSource中的getProducedType方法用于存储SeatunnelRowType,即列映射转换信息的覆写。

改动如下:

  • 不再使用两个已过时的方法。
  • 在构造函数中创建CatalogTable,并在新方法List<CatalogTable> getProducedCatalogTables()中实现catalog的数据传递。在新版本中,catalogTable将从源端传递到汇端,作为后续saveMode里批量同步建表的SQL拼接来源。
  • SeatunnelRowType可以从catalogTable中获取,以适配现有连接器,也可以自己封装公共参数进行传递。

关于Catalog:

  • 我们通过getTable获取CatalogTable。如果配置了自定义列(column),以适配DataX,我们需要基于column生成CatalogTable

b) SInk端的核心改动

  • MaxcomputeSinkFactory中,额外实现了createSink方法,从上下文中获取catalogReadonlyConfig
  • Sink需要去除auto service注解,并实现multi-table sinksaveMode接口。
  • 基于DefaultSaveModeHandler,通过schemaSaveModeDataSaveMode配置,利用catalog中的方法实现数据清理、建表或个性化操作。
  • catalog实现了truncate table接口,用于数据删除和分区重建。

去除auto_service注解的原因:

  • 如果某个连接器汇端(例如maxcompute)已经实现了新模式接口,不再通过过时的prepare方法注入config,而是通过构造函数从上下文传入的catalogtable获取内部seatunnelRowType的适配。这个连接器在排序上比较靠前,AbstractPluginDiscovery在服务加载时总是首先发现它。但是,如果其他插件(例如clickhouse)仍在使用旧模式(prepare),则MultipleTableJobConfigParser解析汇端会将其视为过时插件,并回退到JobConfigParser进行适配。在parseSink方法中,AbstractPluginDiscovery仍会扫描所有通过autoService注解注入的SeaTunnelSink插件。此时,它遇到的第一个插件maxcompute的构造函数不能适配旧模式的实例初始化,导致失败。
  • 这导致了Maxcompute到Clickhouse数据同步时,报出MaxcomputeSink无法初始化的问题。
  • MaxcomputeSinkWriter需要额外实现SupportMutiTableSinkWriter,否则无法进行适当的转换。

如果要指定部分列回流:

  • 必须比较catalogTable中的列数量与指定的自定义列数量,两者相等才可以进行回流。
  • truncate -> data_save_mode / schema_save_mode
  • 支持列数据的隐式转换(seatunnel row数据是一个Object[]数组,需要结合CatalogTable TableSchema + Opds TableSchema

c) 开发特定的catalog

  • 需要实现公共Catalog接口,其中的openclose可以处理一些公共参数和客户端操作。
  • catalog需要通过catalog factory进行实例化,并通过auto service进行装配加载。

本文由 白鲸开源科技 提供发布支持!

相关推荐
老蒋新思维43 分钟前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
TMO Group 探谋网络科技1 小时前
AI Agent工作原理:如何连接数据、决策与行动,助力企业数字化转型?
大数据·人工智能·ai
Chasing Aurora2 小时前
Git 工程指引(命令+问题)
大数据·git·elasticsearch·团队开发·互联网大厂
TG:@yunlaoda360 云老大3 小时前
阿里云国际站代理商RPA跨境服务的适用场景有哪些?
大数据·阿里云·rpa
微盛企微增长小知识3 小时前
2025企业微信服务商测评:头部服务商微盛AI·企微管家技术实力与落地效果解析
大数据·人工智能·企业微信
TMO Group 探谋网络科技3 小时前
AI电商的应用:Magento 使用 Adobe 生成式 AI改造7大业务场景
大数据·人工智能·adobe·ai
UI设计兰亭妙微3 小时前
理性数据,温柔体验:北京兰亭妙微解码 Hydra Corps. 企业管理界面的 “松弛感设计”
大数据·人工智能·用户体验设计
慎独4133 小时前
家家有:从单向支出到价值循环,绿色积分如何 重构商业逻辑?
大数据·人工智能
梦里不知身是客113 小时前
flink使用 DefaultResourceCalculator(默认资源计算器) 策略
大数据·flink
五度易链-区域产业数字化管理平台4 小时前
十五五规划明确数智方向数字经济将迎新变化,五度易链大数据、AI技术如何从单点应用走向全域赋能
大数据·人工智能