【scikit-learn基础】--『回归模型评估』之准确率分析

分类模型 的评估和回归模型 的评估侧重点不一样,
回归模型 一般针对连续型的数据,而分类模型一般针对的是离散的数据。

所以,评估分类模型 时,评估指标与回归模型 也很不一样,

比如,分类模型的评估指标通常包括准确率精确率召回率F1分数 等等。

回归模型 的评估指标通常包括均方误差 (MSE)、均方根误差 (RMSE)和平均绝对误差 (MAE)等等,

不过,这些指标衡量的都是预测值与真实值之间的数值差异。

关于回归模型 的评估,可以参考之前的文章,本篇开始,主要讨论分类模型的评估。

1. 准确率分数

准确率分数accuracy score)代表了模型正确分类的样本比例,它能够直观地反映出模型在分类任务上的准确度。

不过,在处理不平衡数据集时,需要注意的是,准确率分数并不能完全反映模型的性能。

1.1. 计算公式

\(\texttt{accuracy}(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n-1} 1(\hat{y}_i = y_i)\)

其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

1.2. 使用示例

python 复制代码
from sklearn.metrics import accuracy_score
import numpy as np

n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n)

s1 = accuracy_score(y_true, y_pred)
s2 = accuracy_score(y_true, y_pred, normalize=False)
print("准确率比例:{},准确率计数:{}".format(s1, s2))

# 运行结果
准确率比例:0.16,准确率计数:16

上例中,预测值真实值 是随机生成的,所以你的运行结果不一定和我这个一样。
accuracy_score默认是计算正确的比率 ,如果加上参数normalize=False,则计算正确的数量

2. top-k 准确率分数

top-k 准确率分数top-k accuracy score)用于衡量模型在前 k 个预测结果中的正确率。

不同的k值会得到不同的top-k准确率,这可以帮助我们更全面地了解模型的性能。

2.1. 计算公式

\(\texttt{top-k accuracy}(y, \hat{f}) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=1}^{k} 1(\hat{f}_{i,j} = y_i)\)

其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{f}_{i,j}\)是对应于第\(j\)最大预测分数的第\(i\)样本的预测类别。
\(k\)是允许的猜测次数,\(1(x)\)是指示函数。

关于指示函数是什么,可以参考:https://en.wikipedia.org/wiki/Indicator_function

2.2. 使用示例

python 复制代码
from sklearn.metrics import top_k_accuracy_score
import numpy as np

n = 100
y_true = np.random.randint(1, 10, n)
y_score = np.random.rand(n, 9)

s1 = top_k_accuracy_score(y_true, y_score, k=2)
s2 = top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
print("top-k 准确率比例:{},top-k 准确率计数:{}".format(s1, s2))

# 运行结果
top-k 准确率比例:0.23,top-k 准确率计数:23

top-k 准确率分数 计算时,不是用真实值和预测值,用的是真实值top-k中预测值的正确率。

3. 平衡准确率分数

平衡准确率分数balanced accuracy score)特别适用于针对不平衡数据集时的性能评估,

它可以避免某一类样本的预测性能被过度夸大,从而能够更准确地评估模型的性能。

不过,平衡准确率适用于二元分类问题,对于多类分类问题可能需要使用其他扩展的平衡性能指标进行评估。

3.1. 计算公式

\(\texttt{balanced-accuracy}(y, \hat{y}, w) = \frac{1}{\sum{\hat{w}_i}} \sum_i 1(\hat{y}_i = y_i) \hat{w}_i\)

其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

而 \(\hat{w}_i = \frac{w_i}{\sum_j{1(y_j = y_i) w_j}}\),\(1(x)\)是指示函数, \(w_i\)是对应的样本权重。

3.2. 使用示例

python 复制代码
from sklearn.metrics import balanced_accuracy_score
import numpy as np

n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n)

s = balanced_accuracy_score(y_true, y_pred)
print("平均准确率:{}".format(s))

# 运行结果
平均准确率:0.17929799866074375

4. 精确率、召回率和 F1 度量

介绍精确率召回率F1 度量之前,先介绍几个概念。

实际结果(真) 实际结果(假)
预测结果(真) tp(true positive)真阳性 fp(false positive)假阳性
预测结果(假) fn(false negative)假阴性 tn(true negative)真阴性

其中,tptn是预测结果与实际结果相符fpfn是预测结果与实际结果不符

4.1. 计算公式

基于上面的概念,下面定义精确率召回率F1 度量了。

精确率 :\(\text{precision} = \frac{tp}{tp + fp}\)

它用于衡量模型的查准性能 ,即模型预测为 的样本中有多少是真正的

召回率 :\(\text{recall} = \frac{tp}{tp + fn}\)

它用于衡量模型的查全性能 ,即模型能够找出多少真正的

F1度量 :\(F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\)

它是精确率和召回率的调和平均数,用于综合评价模型的性能。

4.2. 使用示例

python 复制代码
from sklearn.metrics import precision_score, recall_score, f1_score
import numpy as np

n = 100
y_true = np.random.randint(0, 2, n)
y_pred = np.random.randint(0, 2, n)

p = precision_score(y_true, y_pred)
r = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
print("精确率:{}\n召回率:{}\nF1度量:{}".format(p, r, f1))

# 运行结果
精确率:0.4489795918367347
召回率:0.4782608695652174
F1度量:0.46315789473684216

5. 总结

本篇归纳总结了分类模型 中关于准确率相关的一些评估方法:

  • 准确率分数
  • top-k 准确率分数
  • 平衡准确率分数
  • 精确率,召回率和 F1度量
相关推荐
心情好的小球藻10 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥11 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
惜.己21 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
都叫我大帅哥2 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`4 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
写写闲篇儿6 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python
路人蛃9 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
qiqiqi(^_×)9 小时前
卡在“pycharm正在创建帮助程序目录”
ide·python·pycharm
Ching·9 小时前
esp32使用ESP-IDF在Linux下的升级步骤,和遇到的坑Traceback (most recent call last):,及解决
linux·python·esp32·esp_idf升级