自然语言处理:transfomer架构

介绍

transfomer是自然语言处理中的一个重要神经网络结构,算是在传统RNN和LSTM上的一个升级,接下来让我们来看看它有处理语言序列上有哪些特殊之处

模型整体架构

原论文中模型的整体架构如下,接下来我们将层层解析各层的作用和代码实现

该模型架构主要包含的基本层有

  • 嵌入层(Input Embedding)
  • 位置编码层(Positional Encoding)
  • 多头注意力层(Multi-Head Attention)
  • 全连接层(Feed Forward)

位置编码层

作用

顾名思义,位置编码层使模型能够记住输入句子的位置信息,语序在理解自然语言方面起到很大的作用

位置编码层的结构

  • 嵌入层(Input Embedding)
  • 位置编码层(Positional Encoding)

嵌入层扩充句子维度,这也是模型训练的关键数据,位置编码层则给句子中的每个词赋予位置信息,因为嵌入层在torch中有函数可以直接调用,所以这里和位置编码层放在一起处理

位置编码的方法

我们将pe当作位置编码,pos为句子当中的第pos个词,i是第i个词向量维度,dmodel为编码维度总数。则

P E p o s , 2 i = s i n ( p o s 1000 0 i / d m o d e l ) PE_{pos, 2i}=sin(\frac{pos}{10000^{i/dmodel}}) PEpos,2i=sin(10000i/dmodelpos)

P E p o s , 2 i + 1 = c o s ( p o s 1000 0 i / d m o d e l ) PE_{pos, 2i+1}=cos(\frac{pos}{10000^{i/dmodel}}) PEpos,2i+1=cos(10000i/dmodelpos)

使用正弦和余弦函数有几个原因:

  • 可学习性: 通过使用正弦和余弦函数,模型可以学习位置编码的参数。这允许模型自动调整和适应不同任务和数据集的序列长度,而无需手动调整位置编码的固定参数。

  • 连续性: 正弦和余弦函数是连续的,这有助于确保位置编码的连续性。这对于模型学习和推广到未见过的序列长度是有益的。

  • 相对位置信息: 正弦和余弦函数的组合能够编码相对位置信息。这意味着不同位置之间的距离和关系可以以一种更灵活的方式进行编码,而不是简单的线性关系。

  • 周期性: 正弦和余弦函数具有周期性,这有助于模型在处理不同尺度的序列时更好地捕捉全局位置信息。

具体代码

接下来我们来看实现位置编码层的代码

这里以输入句子长度为50来举例

python 复制代码
# 定义位置编码层
class PositionEmbedding(torch.nn.Module) :
    def __init__(self):
        super().__init__()
        # pos是第几个词,i是第几个词向量维度,d_model是编码维度总数
        def get_pe(pos, i, d_model):
            d = 1e4**(i / d_model)
            pe = pos / d
            if i % 2 == 0:
                return math.sin(pe) # 偶数维度用sin
            return math.cos(pe) # 奇数维度用cos
        # 初始化位置编码矩阵
        pe = torch.empty(50, 32)
        for i in range(50):
            for j in range(32):
                pe[i, j] = get_pe(i, j, 32)
        pe = pe. unsqueeze(0) # 增加一个维度,shape变为[1,50,32]
        # 定义为不更新的常量
        self.register_buffer('pe', pe)
        # 词编码层
        self.embed = torch.nn.Embedding(39, 32) # 39个词,每个词编码成32维向量
        # 用正太分布初始化参数
        self.embed.weight.data.normal_(0, 0.1)
    def forward(self, x):
        # [8,50]->[8,50,32]
        embed = self.embed(x)
        # 词编码和位置编码相加
        # [8,50,32]+[1,50,32]->[8,50,32]
        embed = embed + self.pe
        return embed

文章将三天一更,将结构详细解析完为止,下一次将讲解掩码Mask的作用...

相关推荐
AI科技9 小时前
原创音乐人搭配AI编曲软件,编曲音源下载哪个软件
人工智能
JQLvopkk9 小时前
C# 实践AI :Visual Studio + VSCode 组合方案
人工智能·c#·visual studio
饭饭大王6669 小时前
CANN 生态深度整合:使用 `pipeline-runner` 构建高吞吐视频分析流水线
人工智能·音视频
初恋叫萱萱9 小时前
CANN 生态中的异构调度中枢:深入 `runtime` 项目实现高效任务编排
人工智能
简佐义的博客9 小时前
生信入门进阶指南:学习顶级实验室多组学整合方案,构建肾脏细胞空间分子图谱
人工智能·学习
无名修道院9 小时前
自学AI制作小游戏
人工智能·lora·ai大模型应用开发·小游戏制作
晚霞的不甘9 小时前
CANN × ROS 2:为智能机器人打造实时 AI 推理底座
人工智能·神经网络·架构·机器人·开源
互联网Ai好者9 小时前
MiyoAI数参首发体验——不止于监控,更是你的智能决策参谋
人工智能
island13149 小时前
CANN HIXL 通信库深度解析:单边点对点数据传输、异步模型与异构设备间显存直接访问
人工智能·深度学习·神经网络
初恋叫萱萱10 小时前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能