时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

目录

效果一览

基本介绍

时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

Multihead-Attention-TCN-LSTM(多头注意力-TCN-LSTM)是一种结合了多个注意力机制、时序卷积网络(TCN)和长短期记忆网络(LSTM)的模型,用于时间序列预测。

输入层:将时间序列数据输入模型。时间序列可以是单变量(仅有一个特征)或多变量(多个特征)。

多头注意力(Multihead Attention):在这一层,模型会对输入数据进行多个注意力计算。每个注意力头都会学习不同的关注点,从而捕捉输入序列中的不同特征。这有助于提取输入数据中的重要信息。

时序卷积网络(TCN):TCN是一种具有扩展感受野的卷积神经网络,适用于处理时间序列数据。TCN的主要优点在于它能够捕捉不同时间尺度的特征。通过堆叠多个TCN层,模型可以学习到更复杂的时间依赖关系。

长短期记忆网络(LSTM):LSTM是一种适用于处理序列数据的循环神经网络。它可以有效地处理长期依赖关系,并且能够记忆并利用过去的信息。在Multihead-Attention-TCN-LSTM模型中,LSTM可以进一步捕捉时间序列中的上下文信息。

输出层:最后一层通常是一个全连接层,用于将模型的输出映射到所需的预测目标。对于时间序列预测任务,可以是一个回归层(用于连续值预测)或分类层(用于离散值预测)。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
Logintern0912 分钟前
使用VS Code进行Python编程的一些快捷方式
开发语言·python
Multiple-ji23 分钟前
想学python进来看看把
开发语言·python
liuyuzhongcc1 小时前
List 接口中的 sort 和 forEach 方法
java·数据结构·python·list
鸟哥大大1 小时前
【Python】pypinyin-汉字拼音转换工具
python·自然语言处理
jiugie1 小时前
MongoDB学习
数据库·python·mongodb
阿尔法波2 小时前
python与pycharm如何设置文件夹为源代码根目录
开发语言·python·pycharm
xing25162 小时前
pytest下allure
开发语言·python·pytest
眸笑丶2 小时前
使用 Python 调用 Ollama API 并调用 deepseek-r1:8b 模型
开发语言·python
dexianshen2 小时前
配置mysql8.0使用PXC实现高可用
python
中国loong2 小时前
pandas连接mysql数据库
python