时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

目录

效果一览

基本介绍

时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

Multihead-Attention-TCN-LSTM(多头注意力-TCN-LSTM)是一种结合了多个注意力机制、时序卷积网络(TCN)和长短期记忆网络(LSTM)的模型,用于时间序列预测。

输入层:将时间序列数据输入模型。时间序列可以是单变量(仅有一个特征)或多变量(多个特征)。

多头注意力(Multihead Attention):在这一层,模型会对输入数据进行多个注意力计算。每个注意力头都会学习不同的关注点,从而捕捉输入序列中的不同特征。这有助于提取输入数据中的重要信息。

时序卷积网络(TCN):TCN是一种具有扩展感受野的卷积神经网络,适用于处理时间序列数据。TCN的主要优点在于它能够捕捉不同时间尺度的特征。通过堆叠多个TCN层,模型可以学习到更复杂的时间依赖关系。

长短期记忆网络(LSTM):LSTM是一种适用于处理序列数据的循环神经网络。它可以有效地处理长期依赖关系,并且能够记忆并利用过去的信息。在Multihead-Attention-TCN-LSTM模型中,LSTM可以进一步捕捉时间序列中的上下文信息。

输出层:最后一层通常是一个全连接层,用于将模型的输出映射到所需的预测目标。对于时间序列预测任务,可以是一个回归层(用于连续值预测)或分类层(用于离散值预测)。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
龙哥说跨境16 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
小白学大数据32 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91134 分钟前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路37 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者5 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽10 小时前
【Pytorch】基本语法
人工智能·pytorch·python