时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

目录

效果一览

基本介绍

时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

Multihead-Attention-TCN-LSTM(多头注意力-TCN-LSTM)是一种结合了多个注意力机制、时序卷积网络(TCN)和长短期记忆网络(LSTM)的模型,用于时间序列预测。

输入层:将时间序列数据输入模型。时间序列可以是单变量(仅有一个特征)或多变量(多个特征)。

多头注意力(Multihead Attention):在这一层,模型会对输入数据进行多个注意力计算。每个注意力头都会学习不同的关注点,从而捕捉输入序列中的不同特征。这有助于提取输入数据中的重要信息。

时序卷积网络(TCN):TCN是一种具有扩展感受野的卷积神经网络,适用于处理时间序列数据。TCN的主要优点在于它能够捕捉不同时间尺度的特征。通过堆叠多个TCN层,模型可以学习到更复杂的时间依赖关系。

长短期记忆网络(LSTM):LSTM是一种适用于处理序列数据的循环神经网络。它可以有效地处理长期依赖关系,并且能够记忆并利用过去的信息。在Multihead-Attention-TCN-LSTM模型中,LSTM可以进一步捕捉时间序列中的上下文信息。

输出层:最后一层通常是一个全连接层,用于将模型的输出映射到所需的预测目标。对于时间序列预测任务,可以是一个回归层(用于连续值预测)或分类层(用于离散值预测)。

程序设计

  • 完整程序和数据获取方式:私信博主回复时序预测 | Python基于Multihead-Attention-TCN-LSTM的时间序列预测

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
高洁0111 小时前
大模型-模型压缩:量化、剪枝、蒸馏、二值化 (4)
人工智能·python·深度学习·aigc·transformer
王六岁11 小时前
# 🐍 前端开发 0 基础学Python小结 Python数据类型使用场景与用途指南
前端·python
luoganttcc11 小时前
用Python的trimesh库计算3DTiles体积的具体代码示例
开发语言·python·3d
我狸才不是赔钱货14 小时前
Python的“环境之殇”:从Venv到Conda的终极抉择
开发语言·python·conda
程序员爱钓鱼15 小时前
Python编程实战 - 函数与模块化编程 - 参数与返回值
后端·python·ipython
程序员爱钓鱼15 小时前
Python编程实战 - 函数与模块化编程 - 局部变量与全局变量
后端·python·ipython
jiuri_121521 小时前
Docker使用详解:在ARM64嵌入式环境部署Python应用
python·docker·容器
chenchihwen21 小时前
AI代码开发宝库系列:Function Call
人工智能·python·1024程序员节·dashscope
汤姆yu1 天前
基于python的化妆品销售分析系统
开发语言·python·化妆品销售分析