BERT-文本分类&NER

BERT文本分类

训练样本

训练数据:18W条

评估数据:1W条

测试数据:1W条

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 体验2D巅峰 倚天屠龙记十大创新概览 8 60年铁树开花形状似玉米芯(组图) 5 同步A股首秀:港股缩量回调 2 中青宝sg现场抓拍 兔子舞热辣表演 8 锌价难续去年辉煌 0 2岁男童爬窗台不慎7楼坠下获救(图) 5 布拉特:放球员一条生路吧 FIFA能消化俱乐部的攻击 7 金科西府 名墅天成 1 状元心经:考前一周重点是回顾和整理 3 |

训练代码

https://github.com/HeiBoWang/Pytorch-NLP/tree/master → 02-Bert 文本分类 → main.py

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dev f1:0.9664522058823529, precision:0.9580865603644647,recall:0.9749652294853964 test f1:0.9651982378854626, precision:0.9618086040386303,recall:0.9686118479221928 |

预测代码以及结果

https://github.com/HeiBoWang/Pytorch-NLP/tree/master → 02-Bert 文本分类 → predict.py

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 模型预测结果: 文本:我们一起去打篮球吧! 预测的类别为:game 文本:我喜欢踢足球! 预测的类别为:game 文本:沈腾和马丽的新电影《独行月球》很好看 预测的类别为:entertainment 文本:昨天玩游戏,完了一整天 预测的类别为:game 文本:现在的高考都已经开始分科考试了。 预测的类别为:education 文本:中方:佩洛西如赴台将致严重后果 预测的类别为:politics 文本:现在的股票基金趋势很不好 预测的类别为:finance 耗时为:2.3200602531433105 s |

评价指标

|---------------------------------------------------|
| dev acc:0.9305 最佳模型Loss Train_Loss:0.1319 |

BERT命名实体识别

训练样本

训练数据:127919条

评估数据:14352条

测试数据:15576条

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 吴 B-NAME 重 I-NAME 阳 E-NAME , O 中 B-CONT 国 I-CONT 国 I-CONT 籍 E-CONT , O 大 B-EDU 学 I-EDU 本 I-EDU 科 E-EDU , O 教 B-TITLE 授 I-TITLE 级 I-TITLE 高 I-TITLE 工 E-TITLE , O 享 O 受 O 国 O 务 O 院 O 特 O 殊 O 津 O 贴 O , O 历 O 任 O 邮 B-ORG 电 I-ORG 部 I-ORG 侯 I-ORG 马 I-ORG 电 I-ORG 缆 I-ORG 厂 E-ORG 仪 B-TITLE 表 I-TITLE 试 I-TITLE 制 I-TITLE 组 I-TITLE 长 E-TITLE 、 O 光 B-TITLE 缆 I-TITLE 分 I-TITLE 厂 I-TITLE 副 I-TITLE 厂 I-TITLE 长 E-TITLE 、 O 研 B-TITLE 究 I-TITLE 所 I-TITLE 副 I-TITLE 所 I-TITLE 长 E-TITLE , O 获 O 得 O 过 O 山 O 西 O 省 O 科 O 技 O 先 O 进 O 工 O 作 O 者 O |

训练代码&评价指标

https://github.com/HeiBoWang/Pytorch-NLP/tree/master → 07-Bert 实体识别 → main.py

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dev f1:0.9664522058823529, precision:0.9580865603644647,recall:0.9749652294853964 test f1:0.9651982378854626, precision:0.9618086040386303,recall:0.9686118479221928 运行时间:3.3876 min |

预测代码以及结果

https://github.com/HeiBoWang/Pytorch-NLP/tree/master → 07-Bert 实体识别 → predict.py

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 模型预测结果: 文本:李某某,男,2012年4月出生,本科学历,工科学士,毕业于电子科技大学。 预测的类别为:['S-ORG', 'I-NAME', 'UNK', 'E-NAME', 'O', 'I-NAME', 'E-EDU', 'I-ORG', 'I-NAME', 'I-ORG', 'I-NAME', 'S-ORG', 'S-ORG', 'I-EDU', 'E-EDU', 'I-ORG', 'E-LOC', 'S-ORG', 'S-ORG', 'B-NAME', 'I-NAME', 'B-PRO', 'B-PRO', 'E-NAME', 'UNK', 'UNK', 'B-NAME', 'E-LOC', 'B-NAME', 'S-ORG'] 耗时为:6.1840057373046875 s |

相关推荐
吴佳浩1 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏2 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力2 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud3 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
云雾J视界3 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
小马爱打代码3 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦3 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
飞哥数智坊3 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记4 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力
智算菩萨4 小时前
AI在智能制造中的落地:从预测维护到自适应生产调度
人工智能·制造