【机器学习】正则化

正则化是防止模型过拟合的方法,它通过对模型的权重进行约束来控制模型的复杂度。

正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了数据的噪声,一般不正则化b。

  • loss(y^,y):模型中所有参数的损失函数,如交叉熵
  • Regularizer:用超参数Regularizer给出w在总loss中的比例,即正则化的权重。
  • w:需要正则化的参数

正则化分为L1正则化和L2正则化:

L1正则化大概率会使很多参数变为0,因此该方法可通过稀疏参数,即减少参数的数量,降低复杂度。

L2正则化会使参数很接近但不为零,因此该方法可通过减小参数值的大小降低复杂度。

来源推导

对于模型权重系数 w 求解是通过最小化目标函数实现的,即求解:

使用

假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的程序来选择这些惩罚的程度。记:

对线性回归:

对逻辑回归:

相关推荐
volcanical7 分钟前
LangGPT结构化提示词编写实践
人工智能
weyson38 分钟前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
RestCloud44 分钟前
ETLCloud异常问题分析ai功能
人工智能·ai·数据分析·etl·数据集成工具·数据异常
IT古董1 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
鲜枣课堂1 小时前
5G-A如何与AI融合发展?华为MBBF2024给出解答
人工智能·5g·华为
武子康2 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
武子康2 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
封步宇AIGC3 小时前
量化交易系统开发-实时行情自动化交易-Okex K线数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC3 小时前
量化交易系统开发-实时行情自动化交易-Okex交易数据
人工智能·python·机器学习·数据挖掘
z千鑫3 小时前
【人工智能】利用大语言模型(LLM)实现机器学习模型选择与实验的自动化
人工智能·gpt·机器学习·语言模型·自然语言处理·自动化·codemoss