【机器学习】正则化

正则化是防止模型过拟合的方法,它通过对模型的权重进行约束来控制模型的复杂度。

正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了数据的噪声,一般不正则化b。

  • loss(y^,y):模型中所有参数的损失函数,如交叉熵
  • Regularizer:用超参数Regularizer给出w在总loss中的比例,即正则化的权重。
  • w:需要正则化的参数

正则化分为L1正则化和L2正则化:

L1正则化大概率会使很多参数变为0,因此该方法可通过稀疏参数,即减少参数的数量,降低复杂度。

L2正则化会使参数很接近但不为零,因此该方法可通过减小参数值的大小降低复杂度。

来源推导

对于模型权重系数 w 求解是通过最小化目标函数实现的,即求解:

使用

假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的程序来选择这些惩罚的程度。记:

对线性回归:

对逻辑回归:

相关推荐
uesowys7 分钟前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 分钟前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子10 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能1 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习