【机器学习】正则化

正则化是防止模型过拟合的方法,它通过对模型的权重进行约束来控制模型的复杂度。

正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了数据的噪声,一般不正则化b。

  • loss(y^,y):模型中所有参数的损失函数,如交叉熵
  • Regularizer:用超参数Regularizer给出w在总loss中的比例,即正则化的权重。
  • w:需要正则化的参数

正则化分为L1正则化和L2正则化:

L1正则化大概率会使很多参数变为0,因此该方法可通过稀疏参数,即减少参数的数量,降低复杂度。

L2正则化会使参数很接近但不为零,因此该方法可通过减小参数值的大小降低复杂度。

来源推导

对于模型权重系数 w 求解是通过最小化目标函数实现的,即求解:

使用

假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的程序来选择这些惩罚的程度。记:

对线性回归:

对逻辑回归:

相关推荐
别惹CC6 分钟前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei2 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴7 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20258 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR9 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散139 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8249 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945199 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火10 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴11 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习