【机器学习】正则化

正则化是防止模型过拟合的方法,它通过对模型的权重进行约束来控制模型的复杂度。

正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了数据的噪声,一般不正则化b。

  • loss(y^,y):模型中所有参数的损失函数,如交叉熵
  • Regularizer:用超参数Regularizer给出w在总loss中的比例,即正则化的权重。
  • w:需要正则化的参数

正则化分为L1正则化和L2正则化:

L1正则化大概率会使很多参数变为0,因此该方法可通过稀疏参数,即减少参数的数量,降低复杂度。

L2正则化会使参数很接近但不为零,因此该方法可通过减小参数值的大小降低复杂度。

来源推导

对于模型权重系数 w 求解是通过最小化目标函数实现的,即求解:

使用

假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的程序来选择这些惩罚的程度。记:

对线性回归:

对逻辑回归:

相关推荐
聚客AI几秒前
大模型学习进阶路线图:从Prompt到预训练的四阶段全景解析
人工智能·llm·掘金·日新计划
张德锋3 分钟前
Pytorch实现天气识别
机器学习
晓13135 分钟前
第七章 OpenCV篇——角点检测与特征检测
人工智能·深度学习·计算机视觉
DeepSeek大模型官方教程35 分钟前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
MidJourney中文版1 小时前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上2 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案2 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer2 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享2 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19892 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm