学习LangChain Agent多参数工具链调用,让大模型去访问网页

写在前面

最近在研究LangChain,简单介绍一下,就是python的一个库,它可以让你的自然语音转为对大模型的任务指令,让它去执行。本质上是将你说的话,将代码构造成各种各样的提示词,从而实现让大模型做知识问答、文档总结、任务拆解甚至是工具调用等一系列操作。这一套框架设计还是很值得去研究学习的。

而对我来说,最有价值的就是通过它创造一个可以帮助你做事情的助手。这篇文章就是想简单分享一下可以打造一个AI助手的技术。

附上github链接

github.com/langchain-a...

Agent类型

LangChain中有一个Agent的概念,就是通过创建一个Agent来去将任务拆解为Chain(链)的形式,帮你去进行工具调用,执行任务。

其中有一个Agent的类型为Structured input ReAct, 该类型是一个支持多输入的工具的类型,可以针对拆解出的任务逐步调用不同的工具完成一个复杂的任务,本篇文章就介绍一下它的使用

示例

下面来看一段示例代码,这里用的大模型是ChatGPT

python 复制代码
import asyncio
import os

from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent

# 提供好的浏览器自动化工具
from langchain.agents.agent_toolkits import PlayWrightBrowserToolkit
from langchain.tools.playwright.utils import (
create_async_playwright_browser,
create_sync_playwright_browser
)

import nest_asyncio

from settings import API_KEY, BASE_ADDRESS

nest_asyncio.apply()

os.environ["LANGCHAIN_TRACING"] = "true"

async_browser = create_async_playwright_browser(headless=False)
browser_toolkit = PlayWrightBrowserToolkit.from_browser(async_browser=async_browser)
tools = browser_toolkit.get_tools()

llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613", temperature=0, openai_api_key=API_KEY, openai_api_base=BASE_ADDRESS)

# 初始化一个Structured类型的Agent
agent_chain = initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)


async def run():
    response = await agent_chain.arun(input="打开百度,并看一下网页标题")
    print(response)


if __name__ == '__main__':
    asyncio.run(run())

这是一个调用浏览器自动化的例子

我给出的任务是:打开百度,并看一下网页标题。很明显,这是一个复杂任务(多操作的任务)。

第一步:访问www.baidu.com

第二部:通过element选择器提取标签的网站名

由于我们在例子中设置了verbose=True,这样就可以让我们清晰的看到调用过程

图中我们可以看到,调用过程也确实如一开始所说做任务拆解

先通过navigate_browser工具,传入url参数,来去访问百度

随后通过get_elements工具,传入selector参数,提取title标签内容

示例中没有体现出多输入的概念,但是我们可以看一下其中一个工具的源码,确实是多参数的输入的。

写在后面

我也尝试过通过与大模型对话的方式,固定它的返回格式,同时规范它的参数输入设置,仅凭对话是可以实现的,这仅仅是大模型工具调用的能力可行性验证。然而Langchian能让这个逻辑框架化,这一点确实太牛了,值得深入研究。

相关推荐
大模型教程10 小时前
8GB显存笔记本能跑多大AI模型?这个计算公式90%的人都不知道!
程序员·llm·agent
大模型教程10 小时前
大模型应用开发到底有多赚钱?看完这5个真实案例,你会惊掉下巴
程序员·llm·agent
量子位10 小时前
GPT-5编程专用版发布!独立连续编程7小时,简单任务提速10倍,VS Code就能用
gpt·chatgpt
AI大模型10 小时前
别乱装!Ollama×DeepSeek×AnythingLLM一键本地AI知识库,快人10倍
程序员·llm·agent
聚客AI12 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
coder_pig12 小时前
🤔 试试 OpenAI 的最强编程模型 "GPT-5-Codex"?
chatgpt·openai·claude
AI小云18 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
302AI18 小时前
302.AI 实战指南丨将任意 API 转为 MCP Server,释放 AI 生产力
llm·api·mcp
花酒锄作田19 小时前
[MCP][06]持久化记忆
llm·mcp
L.fountain20 小时前
机器学习shap分析案例
人工智能·机器学习