5.llama.cpp编译及使用

llama.cpp的编译及使用

下载源码

安装依赖库

  • cmake 编译:版本稍高一些,我的是3.22

编译

支持cuda

复制代码
cd llama.cpp
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
make -j8

最后在build/bin目录下生成

下载模型

模型量化

模型量化的python代码在llama.cpp下面找到。在硬件资源有限的情况下才对模型进行量化。

在build/bin找到quantize

在较新版本默认生成的是ggml-model-f16.gguf

  • 模型量化
    quantize the model to 4-bits (using q4_0 method) 进一步对FP16模型进行4-bit量化

    ./quantize ./models/llama-2-7b-hf/ggml-model-f16.bin ./models/llama-2-7b-hf/ggml-model-q4_0.bin q4_0

模型推理

在build/bin找到main

复制代码
./main -ngl 30 -m ./models/llama-2-7b-hf/ggml-model-q4_0.bin --color -f  ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

Linly模型

自己动手处理

运行测试

  • 测试用脚本

    #!/bin/bash

    llama 推理

    #./main -ngl 30 -m ./models/7B/ggml-model-alpaca-7b-q4_0.gguf --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.3

    linly 基础模型

    #./main -ngl 30 -m ./models/7B/linly-ggml-model-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    linly chatflow模型

    ./main -ngl 30 -m ./models/chatflow_7b/linly-chatflow-7b-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    whisper llama

    #./whisper/talk-llama -l zh -mw ./models/ggml-small_q4_0.bin -ml ./models/7B/ggml-model-alpaca-7b-q4_0.gguf -p "lfrobot" -t 8 -c 0 -vth 0.6 -fth 100 -pe

  • 参数说明
    比较重要的参数:

    -ins 启动类ChatGPT的对话交流模式
    -f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt 指令模板
    -c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512)
    -n 控制回复生成的最大长度(默认:128)
    --repeat_penalty 控制生成回复中对重复文本的惩罚力度
    --temp 温度系数,值越低回复的随机性越小,反之越大
    --top_p, top_k 控制解码采样的相关参数
    -b 控制batch size(默认:512)
    -t 控制线程数量(默认:8),可适当增加
    -ngl 使用cuda核心数
    -m 指定模型

相关推荐
try2find1 天前
安装llama-cpp-python踩坑记
开发语言·python·llama
西西弗Sisyphus2 天前
LLaMA-Factory 单卡后训练微调Qwen3完整脚本
微调·llama·llama-factory·后训练
顾道长生'2 天前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
Zhijun.li@Studio11 天前
【LLaMA-Factory 实战系列】二、WebUI 篇 - Qwen2.5-VL 多模态模型 LoRA 微调保姆级教程
人工智能·自然语言处理·llama·多模态大模型
1213412 天前
LLM:重构数字世界的“智能操作系统”
gpt·aigc·ai编程·llama·gpu算力
冷雨夜中漫步20 天前
Java中如何使用lambda表达式分类groupby
java·开发语言·windows·llama
扫地的小何尚21 天前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
CFAteam21 天前
DeepSeek AI功能演示:如何生成Verilog脚本
人工智能·ai·fpga开发·llama
Tadas-Gao24 天前
从碳基羊驼到硅基LLaMA:开源大模型家族的生物隐喻与技术进化全景
人工智能·机器学习·大模型·llm·llama
Run_Clover24 天前
llama-factory微调大模型环境配置避坑总结
llama