5.llama.cpp编译及使用

llama.cpp的编译及使用

下载源码

安装依赖库

  • cmake 编译:版本稍高一些,我的是3.22

编译

支持cuda

复制代码
cd llama.cpp
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
make -j8

最后在build/bin目录下生成

下载模型

模型量化

模型量化的python代码在llama.cpp下面找到。在硬件资源有限的情况下才对模型进行量化。

在build/bin找到quantize

在较新版本默认生成的是ggml-model-f16.gguf

  • 模型量化
    quantize the model to 4-bits (using q4_0 method) 进一步对FP16模型进行4-bit量化

    ./quantize ./models/llama-2-7b-hf/ggml-model-f16.bin ./models/llama-2-7b-hf/ggml-model-q4_0.bin q4_0

模型推理

在build/bin找到main

复制代码
./main -ngl 30 -m ./models/llama-2-7b-hf/ggml-model-q4_0.bin --color -f  ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

Linly模型

自己动手处理

运行测试

  • 测试用脚本

    #!/bin/bash

    llama 推理

    #./main -ngl 30 -m ./models/7B/ggml-model-alpaca-7b-q4_0.gguf --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.3

    linly 基础模型

    #./main -ngl 30 -m ./models/7B/linly-ggml-model-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    linly chatflow模型

    ./main -ngl 30 -m ./models/chatflow_7b/linly-chatflow-7b-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    whisper llama

    #./whisper/talk-llama -l zh -mw ./models/ggml-small_q4_0.bin -ml ./models/7B/ggml-model-alpaca-7b-q4_0.gguf -p "lfrobot" -t 8 -c 0 -vth 0.6 -fth 100 -pe

  • 参数说明
    比较重要的参数:

    -ins 启动类ChatGPT的对话交流模式
    -f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt 指令模板
    -c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512)
    -n 控制回复生成的最大长度(默认:128)
    --repeat_penalty 控制生成回复中对重复文本的惩罚力度
    --temp 温度系数,值越低回复的随机性越小,反之越大
    --top_p, top_k 控制解码采样的相关参数
    -b 控制batch size(默认:512)
    -t 控制线程数量(默认:8),可适当增加
    -ngl 使用cuda核心数
    -m 指定模型

相关推荐
晨尘光2 天前
在Windows下编译出llama_cpp_python的DLL后,在虚拟环境中使用方法
python·llama
风筝超冷4 天前
LLaMA-Factory - 批量推理(inference)的脚本
llama
bluebonnet275 天前
【agent开发】部署LLM(一)
python·llama
阿牛大牛中6 天前
LLaDa——基于 Diffusion 的大语言模型 打平 LLama 3
人工智能·语言模型·llama
Lilith的AI学习日记6 天前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
LChuck9 天前
【大模型微调】魔搭社区GPU进行LLaMA-Factory微调大模型自我认知
人工智能·语言模型·自然语言处理·nlp·llama·魔搭社区·modelscope
燕双嘤9 天前
Fine-tuning:微调技术,训练方式,LLaMA-Factory,ms-swift
llama
装不满的克莱因瓶11 天前
【小白AI教程】大模型知识扫盲通识
人工智能·数学建模·ai·大模型·llm·llama·rag
TGITCIC14 天前
英伟达破局1000 Token/秒!Llama 4以光速重塑AI推理边界
人工智能·大模型·llama·英伟达·大模型速度·ai赛道·大模型基座
天天爱吃肉821815 天前
【 大模型技术驱动智能网联汽车革命:关键技术解析与未来趋势】
语言模型·汽车·llama