5.llama.cpp编译及使用

llama.cpp的编译及使用

下载源码

安装依赖库

  • cmake 编译:版本稍高一些,我的是3.22

编译

支持cuda

复制代码
cd llama.cpp
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
make -j8

最后在build/bin目录下生成

下载模型

模型量化

模型量化的python代码在llama.cpp下面找到。在硬件资源有限的情况下才对模型进行量化。

在build/bin找到quantize

在较新版本默认生成的是ggml-model-f16.gguf

  • 模型量化
    quantize the model to 4-bits (using q4_0 method) 进一步对FP16模型进行4-bit量化

    ./quantize ./models/llama-2-7b-hf/ggml-model-f16.bin ./models/llama-2-7b-hf/ggml-model-q4_0.bin q4_0

模型推理

在build/bin找到main

复制代码
./main -ngl 30 -m ./models/llama-2-7b-hf/ggml-model-q4_0.bin --color -f  ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

Linly模型

自己动手处理

运行测试

  • 测试用脚本

    #!/bin/bash

    llama 推理

    #./main -ngl 30 -m ./models/7B/ggml-model-alpaca-7b-q4_0.gguf --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.3

    linly 基础模型

    #./main -ngl 30 -m ./models/7B/linly-ggml-model-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    linly chatflow模型

    ./main -ngl 30 -m ./models/chatflow_7b/linly-chatflow-7b-q4_0.bin --color -f ./prompts/chat-with-vicuna-v0.txt -ins -c 2048 --temp 0.2 -n 4096 --repeat_penalty 1.0

    whisper llama

    #./whisper/talk-llama -l zh -mw ./models/ggml-small_q4_0.bin -ml ./models/7B/ggml-model-alpaca-7b-q4_0.gguf -p "lfrobot" -t 8 -c 0 -vth 0.6 -fth 100 -pe

  • 参数说明
    比较重要的参数:

    -ins 启动类ChatGPT的对话交流模式
    -f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt 指令模板
    -c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512)
    -n 控制回复生成的最大长度(默认:128)
    --repeat_penalty 控制生成回复中对重复文本的惩罚力度
    --temp 温度系数,值越低回复的随机性越小,反之越大
    --top_p, top_k 控制解码采样的相关参数
    -b 控制batch size(默认:512)
    -t 控制线程数量(默认:8),可适当增加
    -ngl 使用cuda核心数
    -m 指定模型

相关推荐
姚华军7 小时前
在本地(Windows环境)部署LLaMa-Factory,进行模型微调步骤!!!
windows·ai·llama·llama-factory
Honmaple11 小时前
openclaw使用llama.cpp 本地大模型部署教程
llama
love530love12 小时前
Windows 11 配置 CUDA 版 llama.cpp 并实现系统全局调用(GGUF 模型本地快速聊天)
人工智能·windows·大模型·llama·llama.cpp·gguf·cuda 加速
feasibility.1 天前
多模态模型Qwen3-VL在Llama-Factory中断LoRA微调训练+测试+导出+部署全流程--以具身智能数据集open-eqa为例
人工智能·python·大模型·nlp·llama·多模态·具身智能
问道飞鱼1 天前
【大模型知识】Chroma + Ollama + Llama 3.1 搭建本地知识库
llama·知识库·chroma·ollama
凉忆-2 天前
llama-factory训练大模型
python·pip·llama
zhangfeng11332 天前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama
love530love2 天前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
玄同7652 天前
Llama.cpp 全实战指南:跨平台部署本地大模型的零门槛方案
人工智能·语言模型·自然语言处理·langchain·交互·llama·ollama
zhangfeng11333 天前
大模型微调主要框架 Firefly vs LLaMA Factory 全方位对比表
人工智能·语言模型·开源·llama