【hive】相关性函数进行相关性分析

文章目录

在Hive SQL中,使用类似的相关性函数进行相关性分析。常见的相关性函数包括CORR、COVAR_POP、COVAR_SAMP、STDDEV_POP、STDDEV_SAMP等。

CORR

举个例子,假设有一个表格sales,其中包含两列数据sales_amtadvertising_amt,我们可以使用CORR函数来计算这两列数据的相关性:

sql 复制代码
SELECT CORR(sales_amt, advertising_amt) as correlation
FROM sales;

这将返回一个值,表示sales_amt和advertising_amt之间的相关性,值范围从-1到1。

  • 如果结果为正,则表示两列数据之间呈正相关关系;
  • 如果结果为负,则表示两列数据之间呈负相关关系;
  • 如果结果接近于0,则表示两列数据之间几乎没有相关性。

COVAR_POP

COVAR_POP函数是用于计算总体协方差的Hive SQL函数。它用于衡量两个变量之间的线性关系强度及方向。

COVAR_POP函数的语法如下:

复制代码
COVAR_POP(expression1, expression2)

其中,expression1和expression2是需要计算协方差的两个数值表达式或列名。COVAR_POP函数返回的是这两个变量的总体协方差。

总体协方差(Population Covariance)是基于整个总体的样本数据计算得出的协方差。它衡量了两个变量在总体层面上的线性关系。协方差的结果可以为正、负或零,正值表示正相关,负值表示负相关,零表示无相关性。

需要注意的是,COVAR_POP函数的结果不具有标准化,无法直接进行比较。如果需要进行比较,可以使用相关性函数(如CORR)来衡量两个变量之间的相关性强度。


COVAR_SAMP

COVAR_SAMP函数是用于计算样本协方差的Hive SQL函数。它用于衡量两个变量之间的线性关系强度及方向。

COVAR_SAMP函数的语法如下:

复制代码
COVAR_SAMP(expression1, expression2)

其中,expression1和expression2是需要计算协方差的两个数值表达式或列名。COVAR_SAMP函数返回的是这两个变量的样本协方差。

样本协方差(Sample Covariance)是基于样本数据计算得出的协方差,它用于估计总体协方差。与总体协方差类似,样本协方差的结果可以为正、负或零,表示两个变量之间的线性关系情况。

需要注意的是,样本协方差是样本统计量,对总体协方差进行估计。在实际应用中,通常使用样本协方差来估计总体协方差,并结合其他统计指标进行综合分析。

STDDEV_POP

STDDEV_POP函数是用于计算总体标准差的Hive SQL函数。它用于衡量一组数据的离散程度或变异程度。

STDDEV_POP函数的语法如下:

复制代码
STDDEV_POP(expression)

其中,expression是需要计算标准差的数值表达式或列名。STDDEV_POP函数返回的是这组数据的总体标准差。

总体标准差(Population Standard Deviation)是基于整个总体的样本数据计算得出的标准差。它衡量了数据点相对于均值的离散程度。标准差越大,表示数据点越分散;标准差越小,表示数据点越集中在均值附近。

总体标准差的计算公式为:[ \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} ]

其中,N表示总体样本容量,(x_i) 表示每个样本数据点,(\mu) 表示总体均值。

在实际应用中,总体标准差常用于描述整个总体数据的离散程度,帮助分析数据的分布情况。

STDDEV_SAMP

STDDEV_SAMP函数是用于计算样本标准差的Hive SQL函数。它用于衡量一组样本数据的离散程度或变异程度。

STDDEV_SAMP函数的语法如下:

复制代码
STDDEV_SAMP(expression)

其中,expression是需要计算标准差的数值表达式或列名。STDDEV_SAMP函数返回的是这组样本数据的样本标准差。

样本标准差(Sample Standard Deviation)是基于样本数据计算得出的标准差,用于估计总体标准差。它衡量了样本数据点相对于样本均值的离散程度。与总体标准差类似,样本标准差越大表示样本数据点越分散,越小表示样本数据点越集中在均值附近。

样本标准差的计算公式为:[ \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} ]

其中,n表示样本容量,(x_i) 表示每个样本数据点,(\bar{x}) 表示样本均值。

在实际应用中,样本标准差常用于描述样本数据的离散程度,帮助分析样本数据的分布情况,并通过样本标准差来估计总体标准差。需要注意的是,样本标准差通常用于对样本数据的统计推断,而总体标准差用于对整个总体的统计推断。

相关推荐
多多*14 小时前
Java反射 八股版
java·开发语言·hive·python·sql·log4j·mybatis
yyf96012617 小时前
hiveserver2与beeline进行远程连接hive配置及遇到的问题
数据仓库·hive
yyf96012617 小时前
hive在配置文件中添加了hive.metastore.uris之后进入hive输入命令报错
hive
jiedaodezhuti18 小时前
hive两个表不同数据类型字段关联引发的数据倾斜
数据仓库·hive·hadoop
IvanCodes19 小时前
五、Hive表类型、分区及数据加载
大数据·数据仓库·hive
静听山水2 天前
Hive JOIN 优化策略详解
hive
Microsoft Word2 天前
数据仓库Hive
数据仓库·hive·hadoop
IvanCodes2 天前
四、Hive DDL表定义、数据类型、SerDe 与分隔符核心
大数据·hive·hadoop
IvanCodes2 天前
三、Hive DDL数据库操作
大数据·数据库·hive·hadoop
IT成长日记2 天前
【Hive入门】Hive数据导入与导出:批量操作与HDFS数据迁移完全指南
hive·hadoop·hdfs·数据导入与导出·load data