聊聊PowerJob的MapReduceProcessor

本文主要研究一下PowerJob的MapReduceProcessor

MapReduceProcessor

复制代码
public interface MapReduceProcessor extends MapProcessor {

    /**
     * reduce方法将在所有任务结束后调用
     * @param context 任务上下文
     * @param taskResults 保存了各个子Task的执行结果
     * @return reduce产生的结果将作为任务最终的返回结果
     */
    ProcessResult reduce(TaskContext context, List<TaskResult> taskResults);
}

MapReduceProcessor继承了MapProcessor,它新增了reduce方法

TaskResult

tech/powerjob/worker/core/processor/TaskResult.java

复制代码
@Data
public class TaskResult {

    private String taskId;
    private boolean success;
    private String result;

}

TaskResult定义了taskId、success、result属性

handleLastTask

tech/powerjob/worker/core/processor/runnable/HeavyProcessorRunnable.java

复制代码
    private void handleLastTask(String taskId, Long instanceId, TaskContext taskContext, ExecuteType executeType) {
        final BasicProcessor processor = processorBean.getProcessor();
        ProcessResult processResult;
        Stopwatch stopwatch = Stopwatch.createStarted();
        log.debug("[ProcessorRunnable-{}] the last task(taskId={}) start to process.", instanceId, taskId);

        List<TaskResult> taskResults = workerRuntime.getTaskPersistenceService().getAllTaskResult(instanceId, task.getSubInstanceId());
        try {
            switch (executeType) {
                case BROADCAST:

                    if (processor instanceof BroadcastProcessor) {
                        BroadcastProcessor broadcastProcessor = (BroadcastProcessor) processor;
                        processResult = broadcastProcessor.postProcess(taskContext, taskResults);
                    } else {
                        processResult = BroadcastProcessor.defaultResult(taskResults);
                    }
                    break;
                case MAP_REDUCE:

                    if (processor instanceof MapReduceProcessor) {
                        MapReduceProcessor mapReduceProcessor = (MapReduceProcessor) processor;
                        processResult = mapReduceProcessor.reduce(taskContext, taskResults);
                    } else {
                        processResult = new ProcessResult(false, "not implement the MapReduceProcessor");
                    }
                    break;
                default:
                    processResult = new ProcessResult(false, "IMPOSSIBLE OR BUG");
            }
        } catch (Throwable e) {
            processResult = new ProcessResult(false, e.toString());
            log.warn("[ProcessorRunnable-{}] execute last task(taskId={}) failed.", instanceId, taskId, e);
        }

        TaskStatus status = processResult.isSuccess() ? TaskStatus.WORKER_PROCESS_SUCCESS : TaskStatus.WORKER_PROCESS_FAILED;
        reportStatus(status, suit(processResult.getMsg()), null, taskContext.getWorkflowContext().getAppendedContextData());

        log.info("[ProcessorRunnable-{}] the last task execute successfully, using time: {}", instanceId, stopwatch);
    }

HeavyProcessorRunnable的handleLastTask方法先通过workerRuntime.getTaskPersistenceService().getAllTaskResult获取taskResults,然后对于MapReduceProcessor则回调mapReduceProcessor.reduce方法

getAllTaskResult

tech/powerjob/worker/persistence/TaskPersistenceService.java

复制代码
    public List<TaskResult> getAllTaskResult(Long instanceId, Long subInstanceId) {
        try {
            return execute(() -> taskDAO.getAllTaskResult(instanceId, subInstanceId));
        }catch (Exception e) {
            log.error("[TaskPersistenceService] getTaskId2ResultMap for instance(id={}) failed.", instanceId, e);
        }
        return Lists.newLinkedList();
    }

TaskPersistenceService的getAllTaskResult方法根据instanceId, subInstanceId查询task_info表select task_id, status, result from task_info where instance_id = ? and sub_instance_id = ?,最后只返回状态是WORKER_PROCESS_SUCCESS或者WORKER_PROCESS_FAILED的任务信息

小结

MapReduceProcessor继承了MapProcessor,它新增了reduce方法;HeavyProcessorRunnable的handleLastTask方法先通过workerRuntime.getTaskPersistenceService().getAllTaskResult获取taskResults,然后对于MapReduceProcessor则回调mapReduceProcessor.reduce方法;getAllTaskResult方法根据instanceId, subInstanceId查询task_info表返回状态是WORKER_PROCESS_SUCCESS或者WORKER_PROCESS_FAILED的任务信息(task_info表只在worker节点上),默认是h2(~/powerjob/worker/h2/{uuid}/powerjob_worker_db.mv.db)

相关推荐
Z9fish4 分钟前
sse哈工大C语言编程练习20
c语言·开发语言·算法
萧鼎28 分钟前
Python 包管理的“超音速”革命:全面上手 uv 工具链
开发语言·python·uv
Anastasiozzzz1 小时前
Java Lambda 揭秘:从匿名内部类到底层原理的深度解析
java·开发语言
刘琦沛在进步1 小时前
【C / C++】引用和函数重载的介绍
c语言·开发语言·c++
机器视觉的发动机1 小时前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
HyperAI超神经1 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
R_.L1 小时前
【QT】常用控件(按钮类控件、显示类控件、输入类控件、多元素控件、容器类控件、布局管理器)
开发语言·qt
Zach_yuan2 小时前
自定义协议:实现网络计算器
linux·服务器·开发语言·网络
云姜.2 小时前
java多态
java·开发语言·c++
CoderCodingNo2 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法