【框架地址】
https://github.com/liuruijin17/*LSTR*
【LSTR算法介绍】
LSTR车道线检测算法是一种用于识别和定位车道线的计算机视觉算法。它基于图像处理和机器学习的技术,通过对道路图像进行分析和处理,提取出车道线的位置和方向等信息。
LSTR车道线检测算法的主要步骤包括图像预处理、边缘检测、车道线拟合和后处理等。在图像预处理阶段,算法会对输入的道路图像进行灰度化、降噪等处理,以提高图像的质量和识别效果。边缘检测是算法的核心部分,通过使用Canny算子等边缘检测算法,可以有效地检测出车道线的边缘。
在车道线拟合阶段,算法会根据检测到的边缘点拟合出车道线的几何模型,如直线、圆弧等。这一步可以使用最小二乘法等数学方法进行优化,以提高拟合精度。后处理阶段主要是对拟合结果进行平滑、滤波等处理,以消除噪声和异常点的影响。
LSTR车道线检测算法具有较高的准确性和鲁棒性,能够适应不同的道路场景和光照条件。同时,该算法还可以与自动驾驶系统等应用相结合,为车辆的自主导航和安全驾驶提供重要支持。
此外,LSTR车道线检测算法还具有较好的扩展性和可定制性。通过调整算法参数或集成其他机器学习模型,可以进一步提高算法的性能和适应性。这为未来智能交通系统和无人驾驶技术的发展提供了有力支持。
总之,LSTR车道线检测算法是一种重要的计算机视觉技术,在智能交通和自动驾驶等领域具有广泛的应用前景。随着技术的不断发展和完善,该算法将在未来的交通和车辆控制中发挥更加重要的作用。
【使用说明】
安装好环境后
检测图片:
python main_image.py
检测视频:
python main_video.py
【效果展示】
【测试环境】
anaconda3+python3.8
opencv-python==4.7.0.68
onnxruntime==1.15.1
【源码地址】