数据分析基础之《pandas(2)—基本数据操作》

一、读取一个真实的股票数据

1、读取数据

python 复制代码
# 基本数据操作
data = pd.read_csv("./stock_day.csv")

data

# 删除一些列,使数据简洁点
data = data.drop(['ma5','ma10','ma20','v_ma5','v_ma10','v_ma20'], axis=1)

data

二、索引操作

1、numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似操作

2、直接使用行列索引(先列后行)

因为dataframe带了行列索引,所以可以直接用它的,要注意先列后行

python 复制代码
data['open']['2018-02-26']

3、按名字索引

结合loc函数使用,通过行标签索引行数据,可以多行,可以[行标签, 列标签]

python 复制代码
data.loc['2018-02-26','open']

4、按数字索引

结合iloc函数使用,通过行号索引行数据

python 复制代码
data.iloc[1, 0]

5、组合索引

结合ix函数使用,注意ix函数在0.20.0版本已经废弃

获取行第1天到第4天,['open','close','high','low']这四个指标的结果

data.ix[0:4, ['open','close','high','low']]

组合索引目前已经整合到iloc里,直接用iloc进行组合索引

python 复制代码
# 推荐使用loc和iloc方式获取
data.loc[data.index[0:4], ['open','close','high','low']]

data.iloc[0:4, data.columns.get_indexer(['open','close','high','low'])]

三、赋值操作

1、修改一整列

data.open = 100

2、赋值某一个字段

用上面索引方法找到这一个值,然后赋值

修改第2行第1列

data.iloc[1, 0] = 222

四、排序

1、排序有两种形式,一种对内容进行排序,一种对索引进行排序

2、DataFrame

sort_values(by=, ascending=)

对内容进行排序

说明:

(1)by:单个键或者多个键进行排序,默认升序

(2)ascending=False,降序

(3)ascending=True,升序

python 复制代码
# 按照涨跌幅大小进行排序,使用ascending指定
data.sort_values(by='p_change', ascending=False)
python 复制代码
# 按多个字段进行排序
data.sort_values(by=['high','p_change'], ascending=False)

sort_index()

对索引进行排序

python 复制代码
# 对索引进行排序
data.sort_index()

3、Series

sort_values(ascending=)

对内容进行排序

sort_index()

对索引进行排序

python 复制代码
# Series排序
sr = data['price_change']

sr

sr.sort_values(ascending=False)

sr.sort_index()
相关推荐
少林码僧13 小时前
2.9 字段分箱技术详解:连续变量离散化,提升模型效果的关键步骤
人工智能·ai·数据分析·大模型
SelectDB13 小时前
从 Greenplum 到 Doris:集群缩减 2/3、年省数百万,度小满构建超大规模数据分析平台经验
数据库·数据分析·apache
沐墨染21 小时前
敏感词智能检索前端组件设计:树形组织过滤与多维数据分析
前端·javascript·vue.js·ui·数据挖掘·数据分析
YangYang9YangYan21 小时前
2026大专计算机专业学数据分析的实用性与前景分析
数据挖掘·数据分析
Carl_奕然1 天前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
数据智研1 天前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
UrbanJazzerati1 天前
解码数据分布:茎叶图和箱形图初学者指南
面试·数据分析
少林码僧2 天前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
Golang编程笔记2 天前
电商数据分析的未来发展路径
ai·数据挖掘·数据分析
城数派2 天前
2019-2025年各区县逐月新房房价数据(Excel/Shp格式)
大数据·数据分析·excel