数据分析基础之《pandas(2)—基本数据操作》

一、读取一个真实的股票数据

1、读取数据

python 复制代码
# 基本数据操作
data = pd.read_csv("./stock_day.csv")

data

# 删除一些列,使数据简洁点
data = data.drop(['ma5','ma10','ma20','v_ma5','v_ma10','v_ma20'], axis=1)

data

二、索引操作

1、numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似操作

2、直接使用行列索引(先列后行)

因为dataframe带了行列索引,所以可以直接用它的,要注意先列后行

python 复制代码
data['open']['2018-02-26']

3、按名字索引

结合loc函数使用,通过行标签索引行数据,可以多行,可以[行标签, 列标签]

python 复制代码
data.loc['2018-02-26','open']

4、按数字索引

结合iloc函数使用,通过行号索引行数据

python 复制代码
data.iloc[1, 0]

5、组合索引

结合ix函数使用,注意ix函数在0.20.0版本已经废弃

获取行第1天到第4天,['open','close','high','low']这四个指标的结果

data.ix[0:4, ['open','close','high','low']]

组合索引目前已经整合到iloc里,直接用iloc进行组合索引

python 复制代码
# 推荐使用loc和iloc方式获取
data.loc[data.index[0:4], ['open','close','high','low']]

data.iloc[0:4, data.columns.get_indexer(['open','close','high','low'])]

三、赋值操作

1、修改一整列

data.open = 100

2、赋值某一个字段

用上面索引方法找到这一个值,然后赋值

修改第2行第1列

data.iloc[1, 0] = 222

四、排序

1、排序有两种形式,一种对内容进行排序,一种对索引进行排序

2、DataFrame

sort_values(by=, ascending=)

对内容进行排序

说明:

(1)by:单个键或者多个键进行排序,默认升序

(2)ascending=False,降序

(3)ascending=True,升序

python 复制代码
# 按照涨跌幅大小进行排序,使用ascending指定
data.sort_values(by='p_change', ascending=False)
python 复制代码
# 按多个字段进行排序
data.sort_values(by=['high','p_change'], ascending=False)

sort_index()

对索引进行排序

python 复制代码
# 对索引进行排序
data.sort_index()

3、Series

sort_values(ascending=)

对内容进行排序

sort_index()

对索引进行排序

python 复制代码
# Series排序
sr = data['price_change']

sr

sr.sort_values(ascending=False)

sr.sort_index()
相关推荐
IT毕设梦工厂12 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB19 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
智数研析社1 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
qingyunliushuiyu1 天前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
折翼的恶魔1 天前
数据分析:排序
python·数据分析·pandas
数据牧羊人的成长笔记1 天前
数据分析需要掌握的数学知识(易理解)
数学建模·数据分析
折翼的恶魔1 天前
数据分析:合并二
python·数据分析·pandas
kida_yuan2 天前
【从零开始】14. 数据评分与筛选
python·数据分析·nlp
寒月霜华2 天前
机器学习-探索性数据分析
数据挖掘·数据分析