神经网络 | 基于 CNN 模型实现土壤湿度预测

Hi,大家好,我是半亩花海。在现代农业和环境监测中,了解土壤湿度的变化对于作物生长和水资源管理至关重要。通过深度学习技术,特别是卷积神经网络,我们可以利用过去的土壤湿度数据来预测未来的湿度趋势。本文将使用PaddlePaddle 作为深度学习 框架,通过数据分析、可视化、数据预处理、模型组网、模型训练和模型预测,基于卷积神经网络(CNN)模型来来处理时间序列数据,完成 10cm 土壤湿度的预测,从而实现一个简单的回归模型。


目录

一、导入必要库

二、数据分析

三、数据预处理

四、模型组网

五、模型训练

六、模型预测


一、导入必要库

python 复制代码
import time
import warnings
import numpy as np
import paddle
import paddle.nn as nn
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.preprocessing import MinMaxScaler

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来设置字体样式(黑体)以正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False

二、数据分析

python 复制代码
# 读取数据
soil_humidity = pd.read_excel("./soil_humidity.xlsx", engine="openpyxl")
# print(soil_humidity.head())

# 构建Datetime字段
soil_humidity["Datetime"] = pd.to_datetime(soil_humidity["datetime"])
soil_humidity.drop(["datetime"], axis=1, inplace=True)

# 按照时间顺序排序
soil_humidity.index = soil_humidity.Datetime
soil_humidity.drop(["Datetime"], axis=1, inplace=True)
soil_humidity = soil_humidity.sort_index()
print(soil_humidity.head())
# print(soil_humidity.describe())  # 查看数据统计学描述
# print(soil_humidity.dtypes)  # 查看数据类型

# 可视化数据分布
sns.set(font='SimHei')  # 设置Seaborn字体
plt.figure(figsize=(8, 5))
plt.plot(soil_humidity.index, soil_humidity["10cm湿度(kg/m2)"], "b--", label='10cm湿度(kg/m2)')
plt.title("土壤湿度随时间变化关系", fontsize=14)
plt.xlabel("时间", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.yticks(fontsize=12)
plt.xticks(fontsize=12)
plt.legend()
plt.grid(True, linestyle='--', alpha=0.5)  # 添加网格显示(开启网格,虚线,透明度0.5)
plt.show()

# 筛选所需要的字段
soil_humidity_10cm = soil_humidity.loc[soil_humidity.index[:], ['10cm湿度(kg/m2)']]
print(soil_humidity_10cm)

# 绘制热力图,表示数据框中各列之间的相关性
sns.set(font='SimHei')  # 设置Seaborn字体
corr = soil_humidity.corr()  # 计算数据框中各列之间的相关性
plt.figure(figsize=(12, 8), dpi=100)
plt.title("数据框中各列之间的相关性", fontsize=13)
heatmap = sns.heatmap(corr, square=True, linewidths=0.2, annot=True, annot_kws={'size': 9})
heatmap.set_xticklabels(heatmap.get_xticklabels(), rotation=35, horizontalalignment='right')  # 设置y轴标签向左旋转45度
# 设置x轴和y轴标签字体大小
heatmap.tick_params(axis='x', labelsize=8.5)
heatmap.tick_params(axis='y', labelsize=9)
# 调整热力范围字体大小
cbar = heatmap.collections[0].colorbar
cbar.ax.tick_params(labelsize=9)
plt.show()

**soil_humidity.head()**输出结果:

10cm湿度(kg/m2) 40cm湿度(kg/m2) ... 最大单日降水量(mm) 降水天数

Datetime ...

2012-01-01 13.73 30.87 ... 0.51 5

2012-02-01 13.00 30.87 ... 0.76 5

2012-03-01 12.60 30.87 ... 4.83 13

2012-04-01 11.97 30.73 ... 5.33 3

2012-05-01 14.18 29.99 ... 15.49 10

5 rows x 14 columns


三、数据预处理

python 复制代码
# 划分数据集
all_data = soil_humidity_10cm.values
split_fraction = 0.8  # 设置80%为训练集
train_split = int(split_fraction * int(soil_humidity_10cm.shape[0]))  # 获取数据集的行数,转换为整数,计算切分的训练集大小
train_data = all_data[:train_split, :]  # 从all_data中取前train_split行作为训练集
test_data = all_data[train_split:, :]  # 从all_data中取剩余的部分作为测试集

# 数据集可视化
plt.figure(figsize=(8, 5))
plt.plot(np.arange(train_data.shape[0]), train_data[:, 0], label='train data')
plt.plot(np.arange(train_data.shape[0], train_data.shape[0] + test_data.shape[0]), test_data[:, 0], label='test data')
plt.title("数据集可视化", fontsize=14)
plt.xlabel("时间", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.legend()
plt.show()

# 归一化
scaler = MinMaxScaler(feature_range=(-1, 1))  # 归一化处理,将数据缩放到[-1, 1]之间
train_scal = scaler.fit_transform(train_data.reshape(-1, 1))
test_scal = scaler.fit_transform(test_data.reshape(-1, 1))

# 划分卷积窗口与标签值
window_size = 12
train_scal = train_scal.reshape(-1)
train_scal = paddle.to_tensor(train_scal, dtype='float32')  # 转换成 tensor

# 定义数据输入函数,用于接受序列数据和窗口大小这俩个参数,用于CNN训练
def input_data(seq, ws):
    out = []
    L = len(seq)
    for i in range(L - ws):
        window = seq[i:i + ws]
        label = seq[i + ws:i + ws + 1]
        out.append((window, label))
    return out  # 返回生成的训练样本列表

train_scal_data = input_data(train_scal, window_size)  # 归一化后的训练集数据,定义的窗口大小
# 打印一组数据集
print(train_scal_data[0])

**train_scal_data[0]**这一组数据集的打印结果:

10cm湿度(kg/m2)

Datetime

2012-01-01 13.73

2012-02-01 13.00

2012-03-01 12.60

2012-04-01 11.97

2012-05-01 14.18

... ...

2021-11-01 13.91

2021-12-01 13.14

2022-01-01 12.45

2022-02-01 12.10

2022-03-01 14.96

123 rows x 1 columns


四、模型组网

一维卷积层(convolution1d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。

网络构造大体如下:

  • 先经过一维卷积层 Conv1D
  • 使用 ReLU 激活函数对其进行激活
  • 然后经过第1层线性层 Linear1
  • 再经过第2层线性层 Linear2
python 复制代码
class CNNnetwork(paddle.nn.Layer):
    def __init__(self):
        super().__init__()  # 调用父类函数
        self.conv1d = paddle.nn.Conv1D(1, 1, kernel_size=2)  # 一维卷积层Conv1D(输入, 输出, 卷积核大小)
        self.relu = paddle.nn.ReLU()  # 激活函数, 引入非线性性
        # 定义了线性层, 将输入维度为a的特征映射到输出维度为b的空间
        # 这是一个回归任务, 模型的输出是一个实数
        self.Linear1 = paddle.nn.Linear(11, 50)
        self.Linear2 = paddle.nn.Linear(50, 1)

    def forward(self, x):
        x = self.conv1d(x)   # 通过一维卷积层处理输入数据,提取特征
        x = self.relu(x)     # 将卷积层的输出通过 ReLU 激活函数, 进行非线性变换
        x = self.Linear1(x)  # 第一个线性层,线性变换
        x = self.relu(x)     # 将卷积层的输出通过 ReLU 激活函数, 进行非线性变换
        x = self.Linear2(x)  # 第二个线性层,线性变换
        return x

五、模型训练

python 复制代码
# 五、模型训练
paddle.seed(666)
model = CNNnetwork()
# 设置损失函数,这里使用的是均方误差损失
criterion = nn.MSELoss()
# 设置优化函数和学习率lr
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=0.001)
# 设置训练周期
epochs = 30

# 划分训练集和验证集
split_idx = int(len(train_scal_data) * 0.8)
train_set = train_scal_data[:split_idx]
val_set = train_scal_data[split_idx:]

model.train()
start_time = time.time()

# 用于存储每轮的训练和验证损失
train_losses = []
val_losses = []

for epoch in range(epochs):
    # 训练阶段
    model.train()
    train_loss = 0.0
    for seq, y_train in train_set:
        # 每次更新参数前都梯度归零和初始化
        optimizer.clear_grad()
        # 注意这里要对样本进行 reshape,转换成 conv1d 的 input size(batch size, channel, series length)
        seq = paddle.reshape(seq, [1, 1, -1])
        seq = paddle.to_tensor(seq, dtype='float32')
        y_pred = model(seq)
        y_train = paddle.to_tensor(y_train, dtype='float32')
        loss = criterion(y_pred, y_train)
        loss.backward()
        optimizer.step()
        train_loss += loss.numpy()[0]

    # 验证阶段
    model.eval()
    val_loss = 0.0
    with paddle.no_grad():
        for seq_val, y_val in val_set:
            seq_val = paddle.reshape(seq_val, [1, 1, -1])
            seq_val = paddle.to_tensor(seq_val, dtype='float32')
            y_val = paddle.to_tensor(y_val, dtype='float32')
            val_pred = model(seq_val)
            val_loss += criterion(val_pred, y_val).numpy()[0]

    avg_train_loss = train_loss / len(train_set)
    avg_val_loss = val_loss / len(val_set)

    # 存储训练和验证损失
    train_losses.append(avg_train_loss)
    val_losses.append(avg_val_loss)

    print('Epoch {}/{} - Train Loss: {:.4f} - Val Loss: {:.4f}'.format(epoch + 1, epochs, avg_train_loss, avg_val_loss))

print('\nDuration: {:.0f} seconds'.format(time.time() - start_time))

# 可视化训练和验证损失
plt.figure(figsize=(8, 5))
plt.plot(range(1, epochs + 1), train_losses, label='Train Loss')
plt.plot(range(1, epochs + 1), val_losses, label='Val Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('CNN_Loss')
plt.legend()
plt.show()

六、模型预测

将数据按 window_size 一组分段,每次输入一段后,会输出一个预测的值 y_pred,y_pred 与每段之后的第 window_size + 1 个数据作为对比值,用于计算损失函数。

例如前 5 个数据为 (1,2,3,4,5),取前 4 个进行 CNN 预测,得出的值与 (5) 比较计算 loss。这里使用每组 13 个数据 ,最后一个数据作评估值,即 window_size=12

python 复制代码
# 六、模型预测
"""
将数据按window_size一组分段,每次输入一段后,会输出一个预测的值y_pred
y_pred与每段之后的window_size+1个数据作为对比值,用于计算损失函数
例如前5个数据为(1,2,3,4,5),取前4个进行CNN预测,得出的值与(5)比较计算loss
这里使用每组13个数据,最后一个数据作评估值,即window_size=12
"""
# 选取序列最后12个值开始预测
preds = train_scal_data[-window_size:]
y_pred1 = []
model.eval()  # 设置成eval模式
# 循环的每一步表示向时间序列向后滑动一格
for seq, y_train in preds:
    # 每次更新参数前都梯度归零和初始化
    # 转换成conv1d的input size(batch size, channel, series length)
    seq = paddle.reshape(seq, [1, 1, -1])
    seq = paddle.to_tensor(seq, dtype='float32')
    result = model(seq)
    y_pred1.append(result)
    print("当前预测值:", y_pred1)
y_pred1 = np.array(y_pred1)
y_pred1 = y_pred1.reshape(-1, 1)
print("完整预测值:", y_pred1)

# 预测结果反归一化,还原真实值
true_predictions = scaler.inverse_transform(y_pred1).reshape(-1, 1)

# 预测结果可视化
sns.set(font='SimHei')  # 设置Seaborn字体
plt.figure(figsize=(8, 5))
plt.plot(train_data[-window_size:], label='true_value')  # 绘制真实值
plt.plot(true_predictions, label='predicted_value')  # 绘制预测值
plt.title("真实值和预测值对比结果", fontsize=14)
plt.xlabel("最后12个值", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.yticks(fontsize=12)
plt.xticks(fontsize=12)
plt.grid(True)
plt.legend()
plt.show()

完整预测值:

\[-0.8811799

-0.31046718

-0.09406683

0.29082218

0.64678204

0.4292445

0.11846957

-0.17343275

-0.36173454

-0.55860955

-0.6944711

-0.6295543 \]

相关推荐
Cheney82213 分钟前
华为Ai岗机考20250903完整真题
人工智能·华为
新智元19 分钟前
=COPILOT() 函数横空出世!AI 自动写公式效率起飞,网友:让 Excel 再次伟大
人工智能·openai
scx_link26 分钟前
Word2Vec词嵌入技术和动态词嵌入技术
人工智能·自然语言处理·word2vec
云梦谭28 分钟前
Cursor 编辑器:面向 AI 编程的新一代 IDE
ide·人工智能·编辑器
IT_陈寒37 分钟前
Redis性能提升50%的7个关键优化策略,90%开发者都不知道第5点!
前端·人工智能·后端
乐迪信息44 分钟前
乐迪信息:AI摄像机在智慧煤矿人员安全与行为识别中的技术应用
大数据·人工智能·算法·安全·视觉检测
AI人工智能+44 分钟前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测
咔咔一顿操作1 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
微三云-轩1 小时前
区块链:重构企业数字化的信任核心与创新动力
人工智能·小程序·区块链·生活·我店
君名余曰正则1 小时前
机器学习04——决策树(信息增益、信息增益率、ID3、C4.5、CART、剪枝、连续值缺失值处理)
人工智能·决策树·机器学习