Python Fire:更加灵活的命令行参数

之前介绍过PythonFire库,一个用来生成命令行工具的的库。

请参考:Python Fire:自动生成命令行接口

今天,针对命令行参数,补充两种更加灵活的设置方式。

1. *args 型参数

*args型的参数可以接受任意长度的参数。

比如,模拟一个学校发送通知的功能:

python 复制代码
import fire

def notions(school, *names):
    for name in names:
        print(f"[{school} 通知] hello {name}")


if __name__ == "__main__":
    fire.Fire(notions)

使用起来很灵活,

powershell 复制代码
$  python.exe .\fire-sample.py NJ大学 小红 小李 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

$  python.exe .\fire-sample.py --school NJ大学 小红 小李 小张
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张

$  python.exe .\fire-sample.py --school NJ大学 小红 小李 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

$  python.exe .\fire-sample.py 小红 小李 --school NJ大学 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

从上面使用的示例可看出,

  1. 可以不输入参数名称(比如第一个例子),按照顺序第一参数赋值给school,其余的赋值给*names
  2. *names参数支持不定长度的值
  3. school参数指定参数名的话,可以放在任意的位置(比如上面第四个例子)。

2. **kwargs 型参数

**kwargs 型参数也是不定长度的,和*args型参数不同的地方在于,

使用**kwargs型参数时,需要指定参数名称

比如,模拟一个显示学生成绩的功能:

python 复制代码
import fire

def scores(cls, **students):
    for k, v in students.items():
        print(f"[{cls} 成绩] {k}: {v}")


if __name__ == "__main__":
    fire.Fire(scores)

使用示例如下:

powershell 复制代码
$  python .\fire-sample.py 初三1班 --小红 98 --小李 89 --小王 100
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

$  python .\fire-sample.py --小红 98 --小李 89 --小王 100  初三1班
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

$  python .\fire-sample.py --小红 98 --小李 89 --小王 100 --cls 初三1班
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

cls参数可以不指定名称,也可以放在任意位置上。
**students参数则必须指定参数名称,但参数名称不固定,参数的个数也不固定。

3. 总结

*args型和**kwargs型参数可以有效的缓解命令行工具灵活性不足的问题。

开发命令行工具时,根据自己的场景,使用这两种类型的参数可让命令行工具的接口更加简洁灵活。

相关推荐
摩羯座-18569030594几秒前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
爱隐身的官人41 分钟前
cfshow-web入门-php特性
python·php·ctf
gb42152871 小时前
java中将租户ID包装为JSQLParser的StringValue表达式对象,JSQLParser指的是?
java·开发语言·python
THMAIL1 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%1 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
蒋星熠1 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
爬虫程序猿2 小时前
《京东商品详情爬取实战指南》
爬虫·python
胡耀超2 小时前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
大佬,救命!!!3 小时前
整理python快速构建数据可视化前端的Dash库
python·信息可视化·学习笔记·dash·记录成长
孔丘闻言3 小时前
python调用mysql
android·python·mysql