蓝桥杯嵌入式第七届真题(完成) STM32G431
题目
相关文件
main.c
c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "myadc.h"
#include "key.h"
#include "i2c_hal.h"
#include "stdio.h"
#include "led.h"
#include "usart2.h"
#include "string.h"
#include "stdio.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern uint32_t adctimes;
extern float k;//K?
extern float adcval;
extern uint32_t height;
extern uint8_t level;
extern unsigned char min,med,max;
uint8_t view = 0;
uint8_t lcdtext[30];
extern struct Key key[4];
extern uint32_t led1times,led2times,led3times;
extern uint8_t led2flag,led3flag;
extern uint8_t led1status,led2status,led3status;
extern uint8_t OneData;
extern uint8_t rxflag;
uint8_t txtext[20];
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void lcd_process(void);
void led_process(void);
void adc_process(void);
void key_process(void);
void rx_process(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC2_Init();
MX_TIM2_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
HAL_UART_Receive_IT(&huart1,&OneData,1);
LCD_Init();
I2CInit();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
E2PROM_Write(0x00,min);
HAL_Delay(5);
E2PROM_Write(0x01,med);
HAL_Delay(5);
E2PROM_Write(0x02,max);
HAL_Delay(5);
LED_display(0x00);
while (1)
{
adc_process();
key_process();
lcd_process();
led_process();
rx_process();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_ADC12;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void adc_process(void)
{
float newadcval;
uint8_t newlevel;
uint32_t newheight;
int change;
min = E2PROM_Read(0x00);
med = E2PROM_Read(0x01);
max = E2PROM_Read(0x02);
if(adctimes >= 1000)
{
adctimes = 0;
newadcval = get_Adc(&hadc2);
newheight = k * newadcval;
if(newheight <= min)
{
newlevel = 0;
}
else if(newheight <= med)
{
newlevel = 1;
}
else if(newheight <= max)
{
newlevel = 2;
}
else
{
newlevel = 3;
}
if(level != newlevel)
{
led2flag = 1; // 激活液位变化指示
change = newheight - height;
height = newheight;
adcval = newadcval; // 更新adcval
level = newlevel;
if(change > 0)
{
sprintf((char *)txtext, "A:H%d+L%d+U\r\n", height, level);
HAL_UART_Transmit(&huart1, (uint8_t *)txtext, strlen((char *)txtext), 50);
}
else if(change < 0)
{
sprintf((char *)txtext, "A:H%d+L%d+D\r\n", height, level);
HAL_UART_Transmit(&huart1, (uint8_t *)txtext, strlen((char *)txtext), 50);
}
}
}
}
void lcd_process(void)
{
switch(view)
{
case 0:
{
sprintf((char *)lcdtext," Liquid Level");
LCD_DisplayStringLine(Line0,lcdtext);
sprintf((char *)lcdtext," Height:%d",height);
LCD_DisplayStringLine(Line2,lcdtext);
sprintf((char *)lcdtext," ADC:%.2f",adcval);
LCD_DisplayStringLine(Line4,lcdtext);
sprintf((char *)lcdtext," Level:%d",level);
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 1:
{
sprintf((char *)lcdtext," Parameter Setup");
LCD_DisplayStringLine(Line0,lcdtext);
sprintf((char *)lcdtext," Threshold 1:%d",min);
LCD_DisplayStringLine(Line2,lcdtext);
sprintf((char *)lcdtext," Threshold 2:%d",med);
LCD_DisplayStringLine(Line4,lcdtext);
sprintf((char *)lcdtext," Threshold 3:%d",max);
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 2:
{
sprintf((char *)lcdtext," Parameter Setup");
LCD_DisplayStringLine(Line0,lcdtext);
sprintf((char *)lcdtext," Threshold 1:%d",min);
LCD_SetTextColor(Green);
LCD_DisplayStringLine(Line2,lcdtext);
LCD_SetTextColor(White);
sprintf((char *)lcdtext," Threshold 2:%d",med);
LCD_DisplayStringLine(Line4,lcdtext);
sprintf((char *)lcdtext," Threshold 3:%d",max);
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 3:
{
sprintf((char *)lcdtext," Parameter Setup");
LCD_DisplayStringLine(Line0,lcdtext);
sprintf((char *)lcdtext," Threshold 1:%d",min);
LCD_DisplayStringLine(Line2,lcdtext);
sprintf((char *)lcdtext," Threshold 2:%d",med);
LCD_SetTextColor(Green);
LCD_DisplayStringLine(Line4,lcdtext);
LCD_SetTextColor(White);
sprintf((char *)lcdtext," Threshold 3:%d",max);
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 4:
{
sprintf((char *)lcdtext," Parameter Setup");
LCD_DisplayStringLine(Line0,lcdtext);
sprintf((char *)lcdtext," Threshold 1:%d",min);
LCD_DisplayStringLine(Line2,lcdtext);
sprintf((char *)lcdtext," Threshold 2:%d",med);
LCD_DisplayStringLine(Line4,lcdtext);
sprintf((char *)lcdtext," Threshold 3:%d",max);
LCD_SetTextColor(Green);
LCD_DisplayStringLine(Line6,lcdtext);
LCD_SetTextColor(White);
}
break;
}
}
void key_process(void)
{
if(key[0].key_flag==1&&(view==0))
{
key[0].key_flag=0;
view=1;
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
}
if(key[0].key_flag==1&&(view==1||view==2||view==3||view==4))
{
key[0].key_flag=0;
view=0;
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
}
if(key[1].key_flag==1&&(view==1||view==2||view==3||view==4))
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[1].key_flag=0;
view++;
if(view>4)
view=2;
}
if(key[2].key_flag==1&&view==2)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[2].key_flag=0;
min+=5;
if(min>95)
min=5;
E2PROM_Write(0x00,min);
}
else if(key[2].key_flag==1&&view==3)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[2].key_flag=0;
med+=5;
if(med>95)
med=5;
E2PROM_Write(0x01,med);
}
else if(key[2].key_flag==1&&view==4)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[2].key_flag=0;
max+=5;
if(max>95)
max=5;
E2PROM_Write(0x02,max);
}
if(key[3].key_flag==1&&view==2)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[3].key_flag=0;
min-=5;
if(min<5)
min=5;
E2PROM_Write(0x00,min);
}
else if(key[3].key_flag==1&&view==3)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[3].key_flag=0;
med-=5;
if(med<5)
med=5;
E2PROM_Write(0x01,med);
}
else if(key[3].key_flag==1&&view==4)
{
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
key[3].key_flag=0;
max-=5;
if(max<5)
max=5;
E2PROM_Write(0x01,max);
}
}
void led_process(void)
{
// LD1处理
if(led1times >= 1000) // 每1秒
{
led1times = 0;
led1status = !led1status;
LED_display(led1status ? 0x01 : 0x00);
}
// LD2处理
static int led2count = 0;
if(led2flag && led2times >= 200) // 每0.2秒
{
led2times = 0;
led2status = !led2status;
LED_display(led2status ? 0x02 : 0x00);
if(led2status) // 只在LED从关闭状态变为开启状态时增加计数
{
led2count++;
}
if(led2count >= 5) // 闪烁5次后停止
{
led2flag = 0;
led2count = 0;
}
}
// LD3处理
static int led3count = 0;
if(led3flag && led3times >= 200) // 每0.2秒
{
led3times = 0;
led3status = !led3status;
LED_display(led3status ? 0x04 : 0x00);
if(led3status) // 只在LED从关闭状态变为开启状态时增加计数
{
led3count++;
}
if(led3count >= 5) // 闪烁5次后停止
{
led3flag = 0;
led3count = 0;
}
}
}
void rx_process(void)
{
if(rxflag==1)
{
led3flag = 1;
rxflag = 0;
switch(OneData)
{
case 'C':
{
sprintf((char *)txtext,"C:H%d+L%d\r\n",height,level);
HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
}
break;
case 'S':
{
sprintf((char *)txtext,"S:TL%d+TM%d+TH%d\r\n",min,med,max);
HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
}
break;
default:
{
sprintf((char *)txtext,"Error!\r\n");
HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
}
break;
}
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
adc_process 中1s读取一次使用1ms进入一次SysTick_Handler 中断定时
newadcval、newlevel、newheight都是最新一次数据,与上一次数据比较是否液位发生变化
led_process中题目要求三个led按要求变化,led1要一直闪烁,led2、led3满足特定条件后才变化翻转所以使用两个标志位led2flag和led3flag同时使用静态变量led2count计数闪烁五次后关闭
i2c_hal.c
c
/*
程序说明: CT117E-M4嵌入式竞赛板GPIO模拟I2C总线驱动程序
软件环境: MDK-ARM HAL库
硬件环境: CT117E-M4嵌入式竞赛板
日 期: 2020-3-1
*/
#include "i2c_hal.h"
#define DELAY_TIME 20
/**
* @brief SDA线输入模式配置
* @param None
* @retval None
*/
void SDA_Input_Mode()
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7;
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/**
* @brief SDA线输出模式配置
* @param None
* @retval None
*/
void SDA_Output_Mode()
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/**
* @brief SDA线输出一个位
* @param val 输出的数据
* @retval None
*/
void SDA_Output( uint16_t val )
{
if ( val )
{
GPIOB->BSRR |= GPIO_PIN_7;
}
else
{
GPIOB->BRR |= GPIO_PIN_7;
}
}
/**
* @brief SCL线输出一个位
* @param val 输出的数据
* @retval None
*/
void SCL_Output( uint16_t val )
{
if ( val )
{
GPIOB->BSRR |= GPIO_PIN_6;
}
else
{
GPIOB->BRR |= GPIO_PIN_6;
}
}
/**
* @brief SDA输入一位
* @param None
* @retval GPIO读入一位
*/
uint8_t SDA_Input(void)
{
if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET){
return 1;
}else{
return 0;
}
}
/**
* @brief I2C的短暂延时
* @param None
* @retval None
*/
static void delay1(unsigned int n)
{
uint32_t i;
for ( i = 0; i < n; ++i);
}
/**
* @brief I2C起始信号
* @param None
* @retval None
*/
void I2CStart(void)
{
SDA_Output(1);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SDA_Output(0);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C结束信号
* @param None
* @retval None
*/
void I2CStop(void)
{
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output(0);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SDA_Output(1);
delay1(DELAY_TIME);
}
/**
* @brief I2C等待确认信号
* @param None
* @retval None
*/
unsigned char I2CWaitAck(void)
{
unsigned short cErrTime = 5;
SDA_Input_Mode();
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
while(SDA_Input())
{
cErrTime--;
delay1(DELAY_TIME);
if (0 == cErrTime)
{
SDA_Output_Mode();
I2CStop();
return ERROR;
}
}
SDA_Output_Mode();
SCL_Output(0);
delay1(DELAY_TIME);
return SUCCESS;
}
/**
* @brief I2C发送确认信号
* @param None
* @retval None
*/
void I2CSendAck(void)
{
SDA_Output(0);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C发送非确认信号
* @param None
* @retval None
*/
void I2CSendNotAck(void)
{
SDA_Output(1);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C发送一个字节
* @param cSendByte 需要发送的字节
* @retval None
*/
void I2CSendByte(unsigned char cSendByte)
{
unsigned char i = 8;
while (i--)
{
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output(cSendByte & 0x80);
delay1(DELAY_TIME);
cSendByte += cSendByte;
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
}
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C接收一个字节
* @param None
* @retval 接收到的字节
*/
unsigned char I2CReceiveByte(void)
{
unsigned char i = 8;
unsigned char cR_Byte = 0;
SDA_Input_Mode();
while (i--)
{
cR_Byte += cR_Byte;
SCL_Output(0);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
cR_Byte |= SDA_Input();
}
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output_Mode();
return cR_Byte;
}
//
void I2CInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_6;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
uint8_t E2PROM_Read(uint8_t addr)
{
uint8_t val;
I2CStart();
I2CSendByte(0xA0);
I2CWaitAck();
I2CSendByte(addr);
I2CWaitAck();
//I2CStop();
I2CStart();
I2CSendByte(0xA1);
I2CWaitAck();
val = I2CReceiveByte();
I2CWaitAck();
I2CStop();
return val;
}
void E2PROM_Write(uint8_t addr,uint8_t data)
{
I2CStart();
I2CSendByte(0xA0);
I2CWaitAck();
I2CSendByte(addr);
I2CWaitAck();
I2CSendByte(data);
I2CWaitAck();
I2CStop();
}
key.c
c
#include "key.h"
struct Key key[4] = {0,0,0,0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance==TIM2)
{
key[0].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_0);
key[1].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_1);
key[2].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_2);
key[3].key_gpio = HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0);
for(int i = 0;i<=3;i++)
{
switch(key[i].key_status)
{
case 0:
{
if(key[i].key_gpio==0)
{
key[i].key_status = 1;
}
}
break;
case 1:
{
if(key[i].key_gpio==0)
{
key[i].key_status = 2;
key[i].key_flag = 1;
}
else
{
key[i].key_status = 0;
}
}
break;
case 2:
{
if(key[i].key_gpio==1)
{
key[i].key_status = 0;
}
}
}
}
}
}
led.c
c
#include "led.h"
uint32_t led1times,led2times,led3times;
uint8_t led1status=0,led2status=0,led3status=0;
uint8_t led2flag= 0,led3flag=0;
void LED_display(uint8_t led)
{
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOC,led<<8,GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
}
注意i2c再写数据时注意要间隔5ms以上要不然会数据异常
myadc.c
c
#include "myadc.h"
uint32_t adctimes = 0;
float k = 100/(3.3f);//Kֵ
uint32_t height;
float adcval;
uint8_t level;
unsigned char min=30,med=50,max=70;
float get_Adc(ADC_HandleTypeDef *hadc){
int val = 0.0f;
for(int i = 0; i < 5; i++)
{
HAL_ADC_Start(hadc);
HAL_ADC_PollForConversion(hadc, 100); // 等待转换完成
val += HAL_ADC_GetValue(hadc);
HAL_ADC_Stop(hadc); // 停止ADC转换
}
return val * 3.3f / 4096.0f / 5.0f; // 计算平均电压值
}
usart2.c
c
#include "usart2.h"
uint8_t OneData;
uint8_t rxflag;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART1)
{
rxflag = 1;
HAL_UART_Receive_IT(huart,&OneData,1);
}
}