46行代码实现免费语音识别,用过的人当场拍桌子大叫一声“好”!

1.在做一些语音项目的时候,每次都要调用API,百度的或者是科大讯飞的,要钱贵不说,识别效果还差的要命,此事苦其久也。

2.使用python3.8及以上的编译器。

3.安装pyaudio库包,该库包是用来进行实时语音录制和保存的。使用以下命令:

python 复制代码
pip install pyaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

4.安装whisper库包,该库包是用来进行语音转文字识别。使用以下命令:

python 复制代码
pip install openai-whisper -i https://pypi.tuna.tsinghua.edu.cn/simple

5.安装和配置ffmpeg软件,后面配合录音使用,安装配置好后检测如下。

6.新建一个.py文件,比如"语音识别.py"文件。

7.准备编写代码,首先导入以下四个库包。

python 复制代码
import whisper
import zhconv
import wave  # 使用wave库可读、写wav类型的音频文件
import pyaudio  # 使用pyaudio库可以进行录音,播放,生成wav文件

8.定义一个录音函数,同时在录音函数中定义数据流块。

python 复制代码
def record(time):  # 录音程序
    # 定义数据流块
    CHUNK = 1024  # 音频帧率(也就是每次读取的数据是多少,默认1024)
    FORMAT = pyaudio.paInt16  # 采样时生成wav文件正常格式
    CHANNELS = 1  # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)
    RATE = 16000  # 采样率(即每秒采样多少数据)
    RECORD_SECONDS = time  # 录音时间
    WAVE_OUTPUT_FILENAME = "./output.wav"  # 保存音频路径
    p = pyaudio.PyAudio()  # 创建PyAudio对象
    stream = p.open(format=FORMAT,  # 采样生成wav文件的正常格式
                    channels=CHANNELS,  # 音轨数
                    rate=RATE,  # 采样率
                    input=True,  # Ture代表这是一条输入流,False代表这不是输入流
                    frames_per_buffer=CHUNK)  # 每个缓冲多少帧
    print("* recording")  # 开始录音标志
    frames = []  # 定义frames为一个空列表

9.计算声音数据,准备保存实时声音数据到列表。

python 复制代码
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):  # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次
        data = stream.read(CHUNK)  # 每次读chunk个数据
        frames.append(data)  # 将读出的数据保存到列表中
    print("* done recording")  # 结束录音标志

    stream.stop_stream()  # 停止输入流
    stream.close()  # 关闭输入流
    p.terminate()  # 终止pyaudio

10.将保存在列表中的声音数据以二进制的形式保存在一个wav声音文件中。

python 复制代码
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')  # 以'wb'二进制流写的方式打开一个文件
    wf.setnchannels(CHANNELS)  # 设置音轨数
    wf.setsampwidth(p.get_sample_size(FORMAT))  # 设置采样点数据的格式,和FOMART保持一致
    wf.setframerate(RATE)  # 设置采样率与RATE要一致
    wf.writeframes(b''.join(frames))  # 将声音数据写入文件
    wf.close()  # 数据流保存完,关闭文件

11.继续定义一个main函数,该函数的功能是加载base语音模型(提示:该语音模型会自动下载),将实时语音以中文形式翻译成文字输出。

python 复制代码
def main():
    model = whisper.load_model("base")
    record(5)  # 定义录音时间,单位/s
    result = model.transcribe("output.wav", language='Chinese', fp16=False)
    s = result["text"]
    s1 = zhconv.convert(s, 'zh-cn')
    print(s1)

12.最后,写一个运行入口,运行main函数。

python 复制代码
if __name__ == '__main__':
    main()

13.运行"语音识别.py"文件,

14.运行后,说出"晚上睡不着怎么办",查看效果。

15.完整代码展示

python 复制代码
import whisper
import zhconv
import wave  # 使用wave库可读、写wav类型的音频文件
import pyaudio  # 使用pyaudio库可以进行录音,播放,生成wav文件

def record(time):  # 录音程序
    # 定义数据流块
    CHUNK = 1024  # 音频帧率(也就是每次读取的数据是多少,默认1024)
    FORMAT = pyaudio.paInt16  # 采样时生成wav文件正常格式
    CHANNELS = 1  # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)
    RATE = 16000  # 采样率(即每秒采样多少数据)
    RECORD_SECONDS = time  # 录音时间
    WAVE_OUTPUT_FILENAME = "./output.wav"  # 保存音频路径
    p = pyaudio.PyAudio()  # 创建PyAudio对象
    stream = p.open(format=FORMAT,  # 采样生成wav文件的正常格式
                    channels=CHANNELS,  # 音轨数
                    rate=RATE,  # 采样率
                    input=True,  # Ture代表这是一条输入流,False代表这不是输入流
                    frames_per_buffer=CHUNK)  # 每个缓冲多少帧
    print("* recording")  # 开始录音标志
    frames = []  # 定义frames为一个空列表
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):  # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次
        data = stream.read(CHUNK)  # 每次读chunk个数据
        frames.append(data)  # 将读出的数据保存到列表中
    print("* done recording")  # 结束录音标志

    stream.stop_stream()  # 停止输入流
    stream.close()  # 关闭输入流
    p.terminate()  # 终止pyaudio

    wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')  # 以'wb'二进制流写的方式打开一个文件
    wf.setnchannels(CHANNELS)  # 设置音轨数
    wf.setsampwidth(p.get_sample_size(FORMAT))  # 设置采样点数据的格式,和FOMART保持一致
    wf.setframerate(RATE)  # 设置采样率与RATE要一致
    wf.writeframes(b''.join(frames))  # 将声音数据写入文件
    wf.close()  # 数据流保存完,关闭文件
def main():
    model = whisper.load_model("base")
    record(5)  # 定义录音时间,单位/s
    result = model.transcribe("output.wav", language='Chinese', fp16=False)
    s = result["text"]
    s1 = zhconv.convert(s, 'zh-cn')
    print(s1)

if __name__ == '__main__':
    main()

16.最后,运行成功的同学记得一键三连!有问题评论区见!

相关推荐
烟袅11 小时前
Trae 推出 Solo 模式:AI 开发的“一人一项目”时代来了?
前端·人工智能·solo
元宇宙时间11 小时前
AI赋能的$AIOT:打造Web3全周期智能生态的价值核心
人工智能·web3
瑞禧生物ruixibio11 小时前
Biotin-Oridonin B,生物素标记冬凌草乙素,可用于蛋白质修饰、药物靶标研究
人工智能
MediaTea11 小时前
Python 第三方库:TensorFlow(深度学习框架)
开发语言·人工智能·python·深度学习·tensorflow
GIS好难学11 小时前
【智慧城市】2025年华中农业大学暑期实训优秀作品(2):基于Vue框架和Java后端开发
人工智能·智慧城市
Joker-Tong11 小时前
大模型数据洞察能力方法调研
人工智能·python·agent
哔哩哔哩技术11 小时前
VisionWeaver:从“现象识别”到“病因诊断”,开启AI视觉幻觉研究新篇章
人工智能
道可云11 小时前
AI赋能:农业场景培育如何支撑乡村全面振兴
人工智能
极客代码12 小时前
第七篇:深度学习SLAM——端到端的革命--从深度特征到神经辐射场的建图新范式
人工智能·python·深度学习·计算机视觉·slam·回环检测·地图构建
有Li12 小时前
面向超声半监督分割的类别特异性无标记数据风险最小化|文献速递-文献分享
人工智能·深度学习·计算机视觉