【自然语言处理】P2 PyTorch 基础 - 张量

目录

本系列博文我们将使用 PyTorch 来实现深度学习模型等。PyTorch 是一个开源的、社区驱动的深度学习框架。拥有强大的工具和库生态系统,包含 TorchVision(用于图像处理)、TorchText(用于文本处理)、TorchAudio(用于音频处理)等。

安装 PyTorch

网址:https://pytorch.org/

根据系统以及是否有 GPU 进行安装 PyTorch 库;

如我在 Windows 电脑上安装 CPU 版本的 PyTorch, Anaconda Prompt 中输入命令为:

bash 复制代码
pip3 install torch torchvision torchaudio

张量

PyTorch 库的核心是张量,是一种多维的数据结构,类似于 NumPy 中的 ndarray。但是张量在自动微分深度学习方面提供了更多的操作和功能。张量在 PyTorch 中的地位类似于矩阵在 MATLAB 中的地位,是进行计算的基础。

零阶张量: 零阶张量只是一个数字或标量;

一阶张量: 一阶张量是数组或者向量;

二阶张量: 二阶张量是向量数组或矩阵;

N阶张量: 张量可以概括为标量的 N 维数组。


创建张量

python 复制代码
torch.tensor():从数据创建张量。
torch.zeros():创建一个指定大小和数据类型的全零张量。
torch.ones():创建一个指定大小和数据类型的全一张量。
torch.rand():创建一个指定大小和数据类型的随机张量。
torch.randn():创建一个指定大小和数据类型的标准正态分布张量。
torch.full():创建一个指定大小和数据类型的填充张量。

e . g . e.g. e.g.

python 复制代码
import torch

# 从数据创建张量
x = torch.tensor([1, 2, 3])
# 创建3行2列全零张量
zero_tensor = torch.zeros(3, 2)
# 创建3行2列全1张量
one_tensor = torch.ones(3, 2)
# 创建3行2列随机张量
random_tensor = torch.rand(3, 2)
# 创建3行2列标准正态分布张量
normal_tensor = torch.randn(3, 2)
# 创建3行2列填充张量
full_tensor = torch.full((3, 2), 5)

处理 Numpy 与 PyTorch 张量之间的转换很重要:

python 复制代码
import torch
import numpy as np

npy = np.random.rand(2, 3)
tf_npy = torch.from_numpy(npy)
print(tf_npy)

由此,我们将 Numpy 数组变换为 PyTorch 张量。


操作张量

python 复制代码
import torch

x = torch.tensor([[1.2, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])

# 操作1:获取张量的形状大小
print(x.shape)
print(x.size())

# 操作2:计算总和
sum_x = torch.sum(x)
print(sum_x)

# 操作3:计算平均值
mean_x = torch.mean(x)
print(mean_x)

# 操作4:计算最小值和最大值
min_x = torch.min(x)
max_x = torch.max(x)
print(min_x, max_x)

# 操作5:找到最小值和最大值的索引
argmin_x = torch.argmin(x)
argmax_x = torch.argmax(x)
print(argmin_x, argmax_x)

索引、切片、联合操作

索引:

python 复制代码
import torch

x = torch.tensor([[1.2, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])

# 根据条件选择元素,被筛选掉的用torch.tensor(x)中x替代
where_tensor = torch.where(x > 2, x, torch.tensor(10))
print(where_tensor)

# 根据索引选择元素
index_selected = x[torch.tensor([0, 2])]
print(index_selected)

切片:

python 复制代码
import torch

x = torch.tensor([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])
                 
# 操作1:获取张量的一部分
subset = x[1:3,2]
print(subset)

# 操作2:获取张量的单行元素
element = x[0]
print(element)

# 操作3:使用布尔掩码选择元素
mask = x > 2
selected = x[mask]
print(selected)

拼接和堆叠

python 复制代码
# 拼接
import torch

a = torch.tensor([[1, 2, 3],
                 [4, 5, 6]])

b = torch.tensor([[7, 8, 9]])

# 拼接张量
# 注意通过 dim 判断行列
cat_tensor = torch.cat((x, y), dim=0)
print(cat_tensor)
python 复制代码
# 堆叠
import torch

a = torch.tensor([[1, 2],
                 [4, 5],
                 [7, 8]])

b = torch.tensor([[3, 11],
                 [6, 12],
                 [9, 13]])

# 堆叠张量
# 注意通过dim指定行列
stack_tensor = torch.stack((a, b), dim=1)
print(stack_tensor)

CUDA张量

CUDA张量核心的优势在于它们可以同时执行多个浮点运算,并且高度优化了内存访问模式,从而在执行矩阵乘法和其他线性代数运算时提供了极高的吞吐量。这对于执行深度学习中的大规模并行计算非常有用。

  1. 首先检查 GPU、CUDA 是否可用
python 复制代码
import torch
print(torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

如果在含有 GPU 的笔记本显示 CUDA 不可用,可以尝试从 "PyTorch 安装了 CPU 版本",或者 "GPU 驱动更新" 等角度查找问题。需要注意的是,苹果电脑没有 GPU,自然不存在 CUDA。

  1. 步骤1 CUDA 可用,那么实例化张量并将其移动到 GPU 上
python 复制代码
x = torch.rand(3, 3).to(device)

要对 CUDA 和非 CUDA 对象进行操作,需要确保在用一设备上,否则运算将中断。且 GPU CPU 来回移动数据的成本很高,所以典型的过程是在 GPU 上进行并行化的计算,仅在最终结果出来后传输回 CPU。

此外,如果你有多个 GPU,最佳实践是在执行程序时候使用:

python 复制代码
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py

发布:2024/2/2

版本:第一版

如有任何疑问,请联系我,谢谢!

相关推荐
只说证事37 分钟前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@37 分钟前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬41 分钟前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1211 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者1 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能1 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
新智元1 小时前
起猛了!这个国家任命 AI 为「部长」:全球首个,手握实权,招标 100% 透明
人工智能·openai
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
艾醒1 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法