python统计分析——单样本t检验

参考资料:用python动手学统计学

1、导入库

python 复制代码
## 导入库
# 用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

2、准备基础数据

python 复制代码
data=np.array([58.5298199 , 52.35303878, 74.4461695 , 52.98326296, 55.87687873,
        67.65984894, 47.72614076, 50.26690674, 56.50082581, 52.36104034,
        45.4578831 , 53.36098792, 52.12936842, 59.82777282, 41.68169176,
        49.3985677 , 64.21112808, 69.85864806, 42.91056354, 60.15878009])

3、提出假设

零假设:data的均值为50

备择假设:data的均值不是50

4、计算t统计量

python 复制代码
# 计算样本均值
mu=np.mean(data)
# 计算样本自由度
df=len(data)-1
# 计算平均数标准误
sigma=np.std(data,ddof=1)
se=sigma/np.sqrt(len(data))
# 计算t值
t_value=(mu-50)/se
print(t_value)

5、计算p值

假设总体服从正态分布,那么t值就服从t分布,所以可以使用t分布的累计分布函数。

双尾检验:p=(1-α)×2,这里的α不是显著性水平,而是用累计分布函数求出的当总体均值等于50(本例是50,在实际应用中看零假设对应的值)时的累计概率值,此值越大越好。

python 复制代码
alpha=stats.t.cdf(t_value,df=df)
p=(1-alpha)*2
print(p)

6、单样本t检验函数介绍

使用scipy.stats.ttest_1samp()函数可以方便进行t检验。

python 复制代码
stats.ttest_1samp(data,50)

常用参数介绍如下:

(1)a,数据源,相当于本例的data

(2)popmean,就是假设检验的总体均值,效果如下:

(3)nan_policy,当数据中存在空值nan时的处理方式。propagate表示nan参与计算;omit表示忽略nan;raise表示报错。

(4)alternative用于设置双尾检验/单尾检验。默认为双尾检验。可选设置有:'two-sided', 'less', 'greater'。

'two-sided'表示备择假设为样本均值与给定总体均值不同;

'less'表示备择假设为样本均值小于给定总体均值;

'greater'表示备择假设为样本均值大于给定总体均值。

注意观察下面p值的变化:

相关推荐
我的xiaodoujiao4 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 34--基础知识 9--文件上传功能
前端·python·测试工具·ui·pytest
咸鱼加辣4 小时前
【python面试】Python 的 lambda
javascript·python·算法
感谢地心引力4 小时前
【AI】加入AI绘图的视频封面快速编辑器
人工智能·python·ai·ffmpeg·音视频·pyqt·gemini
我一定会有钱4 小时前
pytest测试框架基础
python·单元测试·自动化·pytest
cr_每天进步一点点4 小时前
【无标题】
人工智能·python·机器学习
我的xiaodoujiao4 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 35--二次封装MySQL数据库连接操作
python·学习·测试工具·pytest
DechinPhy4 小时前
使用Python免费合并PDF文件
开发语言·数据库·python·mysql·pdf
驾数者4 小时前
Flink SQL自定义函数开发:标量、聚合、表值函数实现
python·sql·flink
qq_252614414 小时前
python爬虫爬取视频
开发语言·爬虫·python
PNP Robotics5 小时前
聚焦具身智能,PNP机器人展出力反馈遥操作,VR动作捕捉等方案,获得中国科研贡献奖
大数据·人工智能·python·学习·机器人