论文阅读——MP-Former

MP-Former: Mask-Piloted Transformer for Image Segmentation

https://arxiv.org/abs/2303.07336

mask2former问题是:相邻层得到的掩码不连续,差别很大

denoising training非常有效地稳定训练时期之间的二分匹配。去噪训练的关键思想是将带噪声的GT坐标与可学习查询并行地送到Transformer解码器中,并训练模型去噪和恢复GT边框坐标。MPFormer去噪训练的思想从DN-DETR来,改进的mask2former模型。

MPformer送入class embeddings作为查询,给每层解码层送入GT masks作为attention masks,然后让模型重建类别和masks。

mask2former提出的mask attention可以使得训练时容易收敛。作者发现使得Vit类模型容易收敛的一些常识为给可学习的查询明确的意义,减少不确定性;二是给交叉注意力局部限制,更好的找到目标。因此作者认为给交叉注意力明确的导向可以提高分割性能。和DN-DETR不同,MPformer噪声可选择,可以没有。

作者把mask2former看做一个掩码不断精细化的过程,一层的预测作为下一层的attention masks。

MPformer是每层将GTmask作为attention masks,由于每层大小不一样,所以把GT使用双线性插值到不同分辨率。

加噪声的三种方式:

点噪声表现最好,所以用的点噪声。

Label-guided training:class embeddings会对应一个classification loss,class embeddings加噪声。

两种噪声,类别和掩码噪声的比例给的是0.2。

辅助函数:

结果

相关推荐
数据的世界012 分钟前
重构智慧书-第12条:自然与人工的辩证之美
人工智能
爱写代码的小朋友2 分钟前
AI赋能的混合式教育模式中师生角色重构与互动机制研究
人工智能
AI即插即用4 分钟前
即插即用系列 | MICCAI EM-Net:融合 Mamba 与频域学习的高效 3D 医学图像分割网络
网络·人工智能·深度学习·神经网络·学习·计算机视觉·视觉检测
阿杰学AI7 分钟前
AI核心知识53——大语言模型之Structured CoT 超级模版(简洁且通俗易懂版)
人工智能·ai·语言模型·prompt·提示词·pe·structured cot
hellocode_7 分钟前
【2025年】GPT-5.2怎么样?Instant/Thinking/Pro 怎么选?如何订阅使用chatgptplus?GPT-5.2使用实例展示
人工智能·gpt·chatgpt
咚咚王者15 分钟前
人工智能之数学基础 线性代数:第二章 向量空间
人工智能·线性代数
skywalk816318 分钟前
SCNet 双DCU异构卡vllm推理部署DeepSeek-Coder-V2-Lite-Instruct
人工智能·vllm·scnet·deepseek-coder
aesthetician27 分钟前
用铜钟听歌,发 SCI !
前端·人工智能·音频
UI设计兰亭妙微28 分钟前
告别调度繁琐:北京兰亭妙微拆解货运 APP 的 “轻量高效设计密码”
人工智能·ui设计外包
Mxsoft61929 分钟前
采样率设低致频谱混叠!某次谐波分析误判,提高采样率精准定位!
人工智能