论文阅读——MP-Former

MP-Former: Mask-Piloted Transformer for Image Segmentation

https://arxiv.org/abs/2303.07336

mask2former问题是:相邻层得到的掩码不连续,差别很大

denoising training非常有效地稳定训练时期之间的二分匹配。去噪训练的关键思想是将带噪声的GT坐标与可学习查询并行地送到Transformer解码器中,并训练模型去噪和恢复GT边框坐标。MPFormer去噪训练的思想从DN-DETR来,改进的mask2former模型。

MPformer送入class embeddings作为查询,给每层解码层送入GT masks作为attention masks,然后让模型重建类别和masks。

mask2former提出的mask attention可以使得训练时容易收敛。作者发现使得Vit类模型容易收敛的一些常识为给可学习的查询明确的意义,减少不确定性;二是给交叉注意力局部限制,更好的找到目标。因此作者认为给交叉注意力明确的导向可以提高分割性能。和DN-DETR不同,MPformer噪声可选择,可以没有。

作者把mask2former看做一个掩码不断精细化的过程,一层的预测作为下一层的attention masks。

MPformer是每层将GTmask作为attention masks,由于每层大小不一样,所以把GT使用双线性插值到不同分辨率。

加噪声的三种方式:

点噪声表现最好,所以用的点噪声。

Label-guided training:class embeddings会对应一个classification loss,class embeddings加噪声。

两种噪声,类别和掩码噪声的比例给的是0.2。

辅助函数:

结果

相关推荐
阿湯哥2 分钟前
当前主流AI Agent框架深度分析报告
人工智能
陈喜标bill8 分钟前
S2B2C私域会员电商如何重构企业经营逻辑
大数据·人工智能·重构
donecoding8 分钟前
掌握 :focus-within,让你的AI对话输入体验更上一层楼!
前端·人工智能
newrank_kk9 分钟前
AI 搜索时代新战场:智汇GEO 如何重构品牌 AI 形象管理规则
人工智能·重构
qq_418247889 分钟前
恒源云/autodl与pycharm远程连接
ide·人工智能·python·神经网络·机器学习·pycharm·图论
ccLianLian10 分钟前
ResCLIP
人工智能·计算机视觉
科学最TOP12 分钟前
AAAI25|基于神经共形控制的时间序列预测模型
人工智能·深度学习·神经网络·机器学习·时间序列
独自归家的兔18 分钟前
通义千问3-VL-Plus - 界面交互(本地图片)
人工智能·交互
adaAS141431526 分钟前
YOLO11-ReCalibrationFPN-P345实现酒液品牌识别与分类_1
人工智能·分类·数据挖掘
AEMC马广川27 分钟前
能源托管项目中“企业认证+人才证书”双轨评分策略分析
大数据·运维·人工智能·能源