【Tauri】(2):使用Tauri应用开发,使用开源的Chatgpt-web应用做前端,使用rust 的candle做后端,本地运行小模型桌面应用

视频演示地址

https://www.bilibili.com/video/BV17j421X7Zc/

【Tauri】(2):使用Tauri应用开发,使用开源的Chatgpt-web应用做前端,使用rust 的candle做后端,本地运行小模型桌面应用

1,做一个免费的桌面端的gpt软件方案

使用CPU 运行小模型运行 qwen 1.8B

https://www.modelscope.cn/models/qwen/Qwen-1_8B-Chat-Int4/summary

介绍(Introduction)
通义千问-1.8B(Qwen-1.8B) 是阿里云研发的通义千问大模型系列的18亿参数规模的模型。Qwen-1.8B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-1.8B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-1.8B-Chat。本仓库为Qwen-1.8B-Chat的Int4量化模型的仓库。

通义千问-1.8B(Qwen-1.8B)主要有以下特点:

低成本部署:提供int8和int4量化版本,推理最低仅需不到2GB显存,生成2048 tokens仅需3GB显存占用。微调最低仅需6GB。

大规模高质量训练语料:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。

优秀的性能:Qwen-1.8B支持8192上下文长度,在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,具体评测结果请详见下文。

覆盖更全面的词表:相比目前以中英词表为主的开源模型,Qwen-1.8B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。

系统指令跟随:Qwen-1.8B-Chat可以通过调整系统指令,实现角色扮演,语言风格迁移,任务设定,和行为设定等能力。

2,前端界面界面参考使用

开源的Chatgpt-web应用
https://blog.csdn.net/freewebsys/article/details/129679034

3,后端使用rust 的candle 项目

本地启动小模型的chatgpt服务

https://github.com/huggingface/candle

已经可以支持 chatglm 和 qwen 大模型了

https://github.com/huggingface/candle/blob/main/candle-examples/examples/chatglm/main.rs

然后就可以进行前后的连调了。

4,整个设计方案,和用到的技术

相关推荐
pumpkin8451430 分钟前
Rust 调用 C 函数的 FFI
c语言·算法·rust
蜗牛沐雨42 分钟前
警惕 Rust 字符串的性能陷阱:`chars().nth()` 的深坑与高效之道
开发语言·后端·rust
susnm10 小时前
Dioxus 与数据库协作
前端·rust
羊八井10 小时前
类型、分类定义时使用 type 还是 kind ?
rust·typescript·代码规范
坤坤爱学习2.012 小时前
求医十年,病因不明,ChatGPT:你看起来有基因突变
人工智能·ai·chatgpt·程序员·大模型·ai编程·大模型学
Source.Liu20 小时前
【unitrix】 4.18 类型级二进制数加法实现解析(add.rs)
rust
我不是哆啦A梦1 天前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt
KENYCHEN奉孝1 天前
Rust征服字节跳动:高并发服务器实战
服务器·开发语言·rust
陈敬雷-充电了么-CEO兼CTO1 天前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
小溪彼岸1 天前
GPT-4o的修图能力强的可怕?
chatgpt·aigc