机器学习---规则学习(序贯覆盖、单条规则学习、剪枝优化)

1. 序贯覆盖

回归: 分类:

聚类:

逻辑规则:

读作:若(文字1且文字2且...),则目标概念成立

规则集:充分性与必要性;冲突消解:顺序规则、缺省规则、元规则

eg:

命题逻辑 → 命题规则

原子命题:𝐴*,𝐵,𝐶,...A,B,C,...;逻辑连词:,,,,,¬*...↔,→,←,⋀,⋁,¬...

一阶逻辑 →一阶规则

常量:𝑎*,𝑏,𝑏,...,1,2,3,...*;变量:𝐴*,𝐵,𝐶,...*A,B,C,...

(n元)谓词/函数: p/n, f/n;项:常量|变量|函数/谓词(项1,项2,...)

原子公式:函数/谓词(项1,项2,...)父亲(X,Y),自然数(39),偶数(后继(1)),...

逻辑连词:↔,→,←,⋀,⋁,¬...;逻辑量词:

序贯覆盖:在训练集上每学到一条规则,就将改规则覆盖的样例去除,然后以剩下的样例组成训练

集重复上述过程( 分治策略)。

2. 单条规则学习

目标:寻找一组最优的逻辑文字来构成规则体。本质:搜索问题;搜索空间大,易造成组合爆炸。

方法:自顶向下:一般到特殊( 泛化);自底向上:特殊到一般( 特化)

自顶向下策略:一般到特殊(特化)

自底向上策略:特殊到一般(泛化)

规则评判:增加/删除哪一个候选文字;准确率;信息熵增益(率);基尼系数 ......

规避局部最优:集束搜索:每次保留最优的多个候选规则 ......

3. 剪枝优化

贪心算法导致的非最优的算法:

预剪枝:似然率统计量:

后剪枝:剪错剪枝(REP):穷举所有可能的剪枝操作(删除文字、删除规则),复杂度非常高,

用验证集反复剪枝直到精确率无法提高。

二者结合:IREP:每生成一条新规则即对进行REP剪枝

IREP*:是对IREP的优化

RIPPER:

IREP*生成规则集,选取其规则,找到其覆盖的样例,重新生成规则,特化原规则在泛化,把原规

则和新规则放入规则集中进行评价,留下最好的,反复优化直到无法进步。

RIPPER将所有规则放在一起优化,通过全局的考虑来缓解序贯覆盖的局部性。

相关推荐
Master_oid5 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习
橘颂TA9 分钟前
【Linux】从 “抢资源” 到 “优雅控场”:Linux 互斥锁的原理与 C++ RAII 封装实战(Ⅰ)
linux·运维·服务器·c++·算法
YGGP24 分钟前
【Golang】LeetCode 19. 删除链表的倒数第 N 个节点
算法·leetcode·链表
池塘的蜗牛31 分钟前
mmse-based-OFDM-signal-processing(2)
算法
Kris_LinSD40 分钟前
算法小实验——分治算法快速排序问题实验(含报告)
c语言·算法
Super小白&41 分钟前
十大经典排序算法详解(附C语言实现+复杂度分析)
c语言·算法·排序算法
Eloudy41 分钟前
Birkhoff 多胞形,双随机矩阵的几何世界
算法
V搜xhliang02461 小时前
基于欠采样的影像组学机器学习模型术前预测子宫肌瘤高强度聚焦超声消融效果
人工智能·机器学习
2503_946971861 小时前
【SystemDesign/HA】2025年度高可用分布式仿真节点与预测模型容灾演练配置 (Disaster Recovery Config)
大数据·分布式·算法·系统架构·数据集
万俟淋曦1 小时前
【论文速递】2025年第49周(Nov-30-Dec-06)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能