一个比SDXL更快的模型——Stable Cascade【必坑指北】

2024年的春节假期,AIGC界又发生了重大革命性事件。

  • OpenAI 发布了首款文生视频模型------Sora。简单来说就是,AI视频要变天了!之前的SVD,还是Google的Lumiere最多就几十帧,大约十秒左右,但是Sora却是SOTA级别且达到60s长度的文生视频模型。
  • Stability AI 开源 Stable Cascade,重新修改了diffusion架构,并且速度比原来的sdxl更快。不过目前huggingface下的模型,我仍建议使用 20GB以上的VRAM,而X 平台用户 @GozukaraFurkan 发文表示它只需要大约 9GB 的 GPU 内存,且速度依旧能保持得较好,具体优化需等GitHub发布了。
  • Apple 开售 Vision Pro,继 Meta Quest 3 之后又一位元宇宙的重量级选手。虽然Pico和黑鲨暂时退热了, 但是硅谷依旧热情高涨,值得向往学习。

部署

javascript 复制代码
#install `diffusers` from this branch while the PR is WIP
pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3

官方最新的有问题,会提示 If you want to instead overwrite randomly initialized weights, please make sure to pass both low_cpu_mem_usage=False and ignore_mismatched_sizes=True.

perl 复制代码
# 参考 https://github.com/kijai/ComfyUI-DiffusersStableCascade/issues/13
pip install --force-reinstall --no-deps git+https://github.com/huggingface/diffusers.git@a3dc21385b7386beb3dab3a9845962ede6765887

代码

ini 复制代码
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

device = "cuda"
dtype = torch.bfloat16
num_images_per_prompt = 2

prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=dtype).to(device)

prompt = "Anthropomorphic cat dressed as a pilot"
negative_prompt = ""

with torch.cuda.amp.autocast(dtype=dtype):
    prior_output = prior(
        prompt=prompt,
        height=1024,
        width=1024,
        negative_prompt=negative_prompt,
        guidance_scale=4.0,
        num_images_per_prompt=num_images_per_prompt,
    )
    decoder_output = decoder(
        image_embeddings=prior_output.image_embeddings,
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=0.0,
        output_type="pil",
    ).images

代码

ini 复制代码
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

device = "cuda"
num_images_per_prompt = 2

prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=torch.float16).to(device)

prompt = "Anthropomorphic cat dressed as a pilot"
negative_prompt = ""

prior_output = prior(
    prompt=prompt,
    height=1024,
    width=1024,
    negative_prompt=negative_prompt,
    guidance_scale=4.0,
    num_images_per_prompt=num_images_per_prompt,
    num_inference_steps=20
)
decoder_output = decoder(
    image_embeddings=prior_output.image_embeddings.half(),
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=0.0,
    output_type="pil",
    num_inference_steps=10
).images

#Now decoder_output is a list with your PIL images
相关推荐
安思派Anspire4 小时前
构建一个自主深度思考的RAG管道以解决复杂查询--分析最终的高质量答案(8)
aigc·openai·agent
慕云紫英5 小时前
人工智能在全球多领域的应用潜力及当前技术面临的挑战
人工智能·aigc
Mintopia6 小时前
🤖 具身智能与 WebAIGC 的融合:未来交互技术的奇点漫谈
前端·javascript·aigc
猫头虎19 小时前
昆仑芯 X HAMi X 百度智能云 | 昆仑芯 P800 XPU/vXPU 双模式算力调度方案落地
人工智能·百度·开源·aigc·文心一言·gpu算力·agi
极客密码21 小时前
充了20刀 Cursor Pro 的朋友看到我的方案沉默了...
aigc·ai编程·cursor
后端小肥肠1 天前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
司马阅-SmartRead1 天前
司马阅与铨亿科技达成生态战略合作,AI赋能工业领域智能化转型
人工智能·aigc
Mintopia1 天前
🤖 通用人工智能(AGI)离 Web 应用还有多远?
前端·javascript·aigc
墨风如雪2 天前
360 FG-CLIP2:让AI拥有“火眼金睛”,刷新全球图文理解上限
aigc
用户5191495848452 天前
原型污染攻击工具揭秘:Prototype Pollution Gadgets Finder
人工智能·aigc