数据库管理-第150期 Oracle Vector DB & AI-02(20240212)

数据库管理150期 2024-02-12

  • [数据库管理-第150期 Oracle Vector DB & AI-02(20240212)](#数据库管理-第150期 Oracle Vector DB & AI-02(20240212))
    • [1 LLM](#1 LLM)
    • [2 LLM面临的挑战](#2 LLM面临的挑战)
    • [3 RAG](#3 RAG)
    • [4 向量数据库+LLM](#4 向量数据库+LLM)
    • 总结

数据库管理-第150期 Oracle Vector DB & AI-02(20240212)

作者:胖头鱼的鱼缸(尹海文)

Oracle ACE Associate: Database(Oracle与MySQL)

网思科技 DBA总监

10年数据库行业经验,现主要从事数据库服务工作

拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证

墨天轮MVP、认证技术专家,ITPUB认证专家,OCM讲师

圈内拥有"总监"、"保安"、"国产数据库最大敌人"等称号,非著名社恐(社交恐怖分子)

公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。

除授权转载并标明出处外,均为"非法"抄袭。

本来这一期是昨天要写的,但是昨天睡了很久,加上薛首席携老婆孩子来成都旅游,出去接待了一下,因此没有写。

首席还是那么帅气,今天继续,讲讲LLM。

1 LLM

Large Language Model,大语言模型,是生成式AI 的一个类型,是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练,单一模型可以执行广泛的任务,包括词法分析、文本分类、命名实体识别、关键词提取、翻译、情感分析、摘要、对话、写作文、写代码等。

2 LLM面临的挑战

大预言模型面临的最大挑战即是幻觉(hallucinations)和过时信息,LLM训练集来自互联网的通用数据,基于某个时间点的数据快照。因此会出现以下一些问题:

  • 结果正确性不可控:提示不精准或不完善(即互联网通用数据中存在大量不精准甚是是错的的内容)
  • 结果是过时的信息:模型更新成本高(即LLM训练出结果即过时,因为互联网通用数据是实时变化的)
  • 结果是通用信息:难以与企业或某领域特定专业数据相关(一些特殊专用场景无法使用通用信息里匹配,需要专业信息加持)

3 RAG

Retrieval-Augmented Generation,检索式增强生成方法,从企业专业知识库中检索与请求最相关的信息,并与用户请求捆绑一起作为提示,发送给LLM以获得响应。

同时,包括AI聊天等功能,也可以创建专用的知识库,来增加聊天的能力,比如更强的上下文理解能力,或者更平稳柔和倾向于人类的语言沟通。

4 向量数据库+LLM

RAG让LLM不用重新训练就能够获取最新的信息,基于RAG产生更可靠更专业的输出。实施RAG需要向量数据库等技术,这些技术可以快速嵌入新数据,快速搜索数据并输入给LLM。

  • 幻觉问题:向量数据库可以为LLM创建一个长期记忆的数据库,为LLM提供可靠的信息源。LLM以此信息作为基础,从而减少模型产生幻觉的可能性。
  • 专业领域:通过将权威、可信的信息转换为向量,并将它们加载到向量数据库中。用企业相关特定内容增强提示,以使LLM产生更专业的答案。
  • 令牌(Token)限制:通过使用最相关的内容避免超出 LLM 令牌限制。(访问安全)
  • 数据安全:避免使用敏感的私域客户数据进行LLM训练和微调。
  • 知识更新:向量数据库作为LLM的实时更新的知识库。
  • 成本:比微调LLM便宜,微调LLM更新模型费用可能很高。
  • 缓存:缓存以前的 LLM 提示/回答以提高性能并降低成本。

总结

本期简单讲解了一下LLM的相关信息,下一期将正式进入Oracle Vector DB的相关内容。

老规矩,知道写了些啥。

相关推荐
AI慧聚堂1 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者2 分钟前
【pytorch】循环神经网络
人工智能·pytorch
dingdingfish7 分钟前
JSON 系列之1:将 JSON 数据存储在 Oracle 数据库中
oracle·json·database
cdut_suye15 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
小蜗牛慢慢爬行28 分钟前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
hanbarger32 分钟前
nosql,Redis,minio,elasticsearch
数据库·redis·nosql
开发者每周简报34 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神38 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
微服务 spring cloud1 小时前
配置PostgreSQL用于集成测试的步骤
数据库·postgresql·集成测试