挑战杯 YOLOv7 目标检测网络解读

文章目录

  • [0 前言](#0 前言)
  • [1 yolov7的整体结构](#1 yolov7的整体结构)
  • [2 关键点 - backbone](#2 关键点 - backbone)
  • [关键点 - head](#关键点 - head)
  • [3 训练](#3 训练)
  • [4 使用效果](#4 使用效果)
  • [5 最后](#5 最后)

0 前言

世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。

从 2015 年的 YOLOV1,2016 年 YOLOV2,2018 年的 YOLOV3,到2020年的 YOLOV4、 YOLOV5, 以及最近出现的

YOLOV6 和 YOLOV7 可以说 YOLO 系列见证了深度学习时代目标检测的演化。对于 YOLO 的基础知识以及 YOLOV1 到 YOLOV5

可以去看大白的 YOLO 系列,本文主要对 YOLOV7 的网络结构进行一个梳理,便于大家直观的感受。

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 yolov7的整体结构

我们先整体来看下 YOLOV7,首先对输入的图片 resize 为 640x640 大小,输入到 backbone 网络中,然后经 head

层网络输出三层不同 size 大小的 feature map ,经过 Rep 和 conv输出预测结果,这里以 coco 为例子,输出为 80

个类别,然后每个输出(x ,y, w, h, o) 即坐标位置和前后背景,3 是指的 anchor 数量,因此每一层的输出为 (80+5)x3 =

255再乘上 feature map 的大小就是最终的输出了。

2 关键点 - backbone

YOLOV7 的 backbone 如下图所示

总共有 50 层, 我在上图用黑色数字把关键层数标示出来了。首先是经过 4 层卷积层,如下图,CBS 主要是 Conv + BN + SiLU

构成,我在图中用不同的颜色表示不同的 size 和 stride, 如 (3, 2) 表示卷积核大小为 3 ,步长为 2。 在 config 中的配置如图。

经过 4个 CBS 后,特征图变为 160 * 160 * 128 大小。随后会经过论文中提出的 ELAN 模块,ELAN 由多个 CBS

构成,其输入输出特征大小保持不变,通道数在开始的两个 CBS 会有变化, 后面的几个输入通道都是和输出通道保持一致的,经过最后一个 CBS

输出为需要的通道。



MP 层 主要是分为 Maxpool 和 CBS , 其中 MP1 和 MP2 主要是通道数的比变化。

backbone的基本组件就介绍完了,我们整体来看下 backbone,经过 4 个 CBS 后,接入例如一个 ELAN ,然后后面就是三个 MP +

ELAN 的输出,对应的就是 C3/C4/C5 的输出,大小分别为 80 * 80 * 512 , 40 * 40 * 1024, 20 * 20 *

1024。 每一个 MP 由 5 层, ELAN 有 8 层, 所以整个 backbone 的层数为 4 + 8 + 13 * 3 = 51 层, 从 0

开始的话,最后一层就是第 50 层。

关键点 - head


YOLOV7 head 其实就是一个 pafpn 的结构,和之前的YOLOV4,YOLOV5 一样。首先,对于 backbone 最后输出的 32

倍降采样特征图 C5,然后经过 SPPCSP,通道数从1024变为512。先按照 top down 和 C4、C3融合,得到 P3、P4 和 P5;再按

bottom-up 去和 P4、P5 做融合。这里基本和 YOLOV5 是一样的,区别在于将 YOLOV5 中的 CSP 模块换成了 ELAN-H 模块,

同时下采样变为了 MP2 层。

ELAN-H 模块是我自己命名的,它和 backbone 中的 ELAN 稍微有点区别就是 cat 的数量不同。

3 训练

有一点比较坑,如果想使用较大的预训练模型,需要使用train_aux.py进行训练,否则效果很差

4 使用效果

丝滑!

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关推荐
哆啦A梦的口袋呀11 分钟前
基于Python学习《Head First设计模式》第六章 命令模式
python·学习·设计模式
努力搬砖的咸鱼13 分钟前
从零开始搭建 Pytest 测试框架(Python 3.8 + PyCharm 版)
python·pycharm·pytest
Calvex15 分钟前
PyCharm集成Conda环境
python·pycharm·conda
一千柯橘27 分钟前
python 项目搭建(类比 node 来学习)
python
sduwcgg32 分钟前
python的numpy的MKL加速
开发语言·python·numpy
大模型真好玩33 分钟前
可视化神器WandB,大模型训练的必备工具!
人工智能·python·mcp
东方佑35 分钟前
使用 Python 自动化 Word 文档样式复制与内容生成
python·自动化·word
钢铁男儿41 分钟前
Python 接口:从协议到抽象基 类(定义并使用一个抽象基类)
开发语言·python
databook1 小时前
当机器学习遇见压缩感知:用少量数据重建完整世界
python·机器学习·scikit-learn
M1A11 小时前
Python数据结构操作:全面解析与实践
后端·python