【自然语言处理】:实验1布置,Word2Vec&TranE的实现

清华大学驭风计划

因为篇幅原因实验答案分开上传,答案链接 http://t.csdnimg.cn/5cyMG

如果需要详细的实验报告或者代码可以私聊博主

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~

实验1: Word2Vec&TranE的实现

案例简介

Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Vec的思路,用"头实体+关系=尾实体"这一简单的训练目标取得了惊人的效果。本次任务要求在给定的框架中分别基于Text8和Wikidata数据集实现Word2Vec和TransE,并用具体实例体会词向量和实体/关系向量的含义。

A ,Word2Vec实现

在这个部分,你需要基于给定的代码实现Word2Vec,在Text8语料库上进行训练,并在给定的WordSim353数据集上进行测试

WordSim353是一个词语相似度基准数据集,在WordSim353数据集中,表格的第一、二列是一对单词,第三列中是该单词对的相似度的人工打分(第三列也已经被单独抽出为ground_truth.npy)。我们需要用我们训练得到的词向量对单词相似度进行打分,并与人工打分计算相关性系数,总的来说,越高的相关性系数代表越好的词向量质量。

我们提供了一份基于gensim的Word2Vec实现,请同学们阅读代码并在Text8语料库上进行训练, 关于gensim的Word2Vec模型更多接口和用法,请参考[2]。

由于gensim版本不同,模型中的size参数可能需要替换为vector_size(不报错的话不用管)

运行`word2vec.py` 后,模型会保存在`word2vec_gensim`中,同时代码会加载WordSim353数据集,进行词对相关性评测,得到的预测得分保存在score.npy文件中

之后在Word2Vec文件夹下运行 ``python evaluate.py score.npy``, 程序会自动计算score.npy 和ground_truth.npy 之间的相关系数得分,此即为词向量质量得分。

任务

  • 运行`word2vec.py`训练Word2Vec模型, 在WordSim353上衡量词向量的质量。

  • 探究Word2Vec中各个参数对模型的影响,例如词向量维度、窗口大小、最小出现次数。

  • (选做)对Word2Vec模型进行改进,改进的方法可以参考[3],包括加入词义信息、字向量和词汇知识等方法。请详细叙述采用的改进方法和实验结果分析。

快速上手(参考)

在Word2Vec文件夹下运行 ``python word2vec.py``, 即可成功运行, 运行生成两个文件 word2vec_gensim和score.npy。

B, TransE实现

这个部分中,你需要根据提供的代码框架实现TransE,在wikidata数据集训练出实体和关系的向量表示,并对向量进行分析。

在TransE中,每个实体和关系都由一个向量表示,分别用h, r,t表示头实体、关系和尾实体的表示向量,首先对这些向量进行归一化

h=h/||h||

r=r/||r||

t=t/||t||

则得分函数(score function)为

f(h,r,t)=||h+r-t||

其中||\cdot||表示向量的范数。得分越小,表示该三元组越合理。

在计算损失函数时,TransE采样一对正例和一对负例,并让正例的得分小于负例,优化下面的损失函数

其中(h,r,t), (h',r',t')分别表示正例和负例,gamma是​一个超参数(margin),用于控制正负例的距离。

任务

  • 在文件`TransE.py`中,你需要补全`TransE`类中的缺失项,完成TransE模型的训练。需要补全的部分为:

  • `_calc()`:计算给定三元组的得分函数(score function)

  • `loss()`:计算模型的损失函数(loss function)

  • 完成TransE的训练,得到实体和关系的向量表示,存储在`entity2vec.txt`和`relation2vec.txt`中。

  • 给定头实体Q30,关系P36,最接近的尾实体是哪些?

  • 给定头实体Q30,尾实体Q49,最接近的关系是哪些?

  • https://www.wikidata.org/wiki/Q30https://www.wikidata.org/wiki/Property:P36 中查找上述实体和关系的真实含义,你的程序给出了合理的结果吗?请分析原因。

  • (选做)改变参数`p_norm`和`margin`,重新训练模型,分析模型的变化。

快速上手(参考)

在TransE文件夹下运行 ``python TransE.py``, 可以看到程序在第63行和第84行处为填写完整而报错,将这两处根据所学知识填写完整即可运行成功代码(任务第一步),然后进行后续任务。

评分标准

请提交代码和实验报告,评分将从代码的正确性、报告的完整性和任务的完成情况等方面综合考量。

参考资料

[1] https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient

[2] https://radimrehurek.com/gensim/models/word2vec.html

[3] A unified model for word sense representation and disambiguation. in Proceedings of EMNLP, 2014.

相关推荐
翔云API1 分钟前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街7 分钟前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境23 分钟前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步29 分钟前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Qspace丨轻空间40 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
没有不重的名么41 分钟前
门控循环单元GRU
人工智能·深度学习·gru
love_and_hope44 分钟前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
Chef_Chen1 小时前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
2403_875736871 小时前
道品科技智慧农业中的自动气象检测站
网络·人工智能·智慧城市
学术头条1 小时前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型