深度学习基础之《TensorFlow框架(1)—TF数据流图》

一、TensorFlow实现一个加法运算

day01_deeplearning.py

python 复制代码
import tensorflow as tf

def tensorflow_demo():
    """
    TensorFlow的基本结构
    """

    # TensorFlow实现加减法运算
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("TensorFlow加法运算结果:\n", c_t)
    print(c_t.numpy())

    # 2.0版本不需要开启会话,已经没有会话模块了

    return None

if __name__ == "__main__":
    # 代码1:TensorFlow的基本结构
    tensorflow_demo()
bash 复制代码
python3 day01_deeplearning.py

2024-02-16 01:04:36.715081: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2024-02-16 01:04:36.715126: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2024-02-16 01:04:38.803888: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2024-02-16 01:04:38.803994: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
2024-02-16 01:04:38.804045: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (server001): /proc/driver/nvidia/version does not exist
2024-02-16 01:04:38.804692: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
TensorFlow加法运算结果:
 tf.Tensor(5, shape=(), dtype=int32)
5

二、TensorFlow结构分析

1、TensorFlow程序通常被组织成一个构建图阶段和一个执行图阶段

在构建阶段,数据与操作的执行步骤被描述成一个图

在执行阶段,使用会话执行构建好的图中的操作

TensorFlow1.x构建和执行是分成两个步骤,TensorFlow2.x升级到了即时执行模式,所以就不需要会话了

参考资料:

https://www.jianshu.com/p/006d1292402b

https://blog.csdn.net/weixin_40920183/article/details/106718315

注:Session函数在2.x版本中有保留的tf.compat.v1.Session

2、图

这是TensorFlow将计算表示为指令之间的依赖关系的一种表示法

图定义了数据和操作的步骤

3、会话

TensorFlow1.x中跨一个或多个本地或远程设备运行数据流图的机制

4、张量(Tensor)

TensorFlow中的基本数据对象

5、节点

提供图当中执行的操作

三、其他注意点

1、不打印警告信息

添加:

python 复制代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

注意:要写在import tensorflow as tf的前面

2、如果要完全弃用2.x的功能(不建议)

添加:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
相关推荐
Yan-英杰7 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
charles_vaez5 小时前
开源模型应用落地-LangGraph101-探索 LangGraph 短期记忆
深度学习·语言模型·自然语言处理
WHATEVER_LEO6 小时前
【每日论文】Latent Radiance Fields with 3D-aware 2D Representations
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理
Kai HVZ7 小时前
《深度学习》——调整学习率和保存使用最优模型
人工智能·深度学习·学习
爱吃香蕉的阿豪10 小时前
在c#中虚方法和抽象类的区别
深度学习·c#·.netcore
奋斗的袍子00710 小时前
DeepSeek-R1本地部署详细指南!(Ollama+Chatbox AI+Open WebUI)
人工智能·后端·深度学习·大模型·webui·本地部署·deepseek
Francek Chen11 小时前
【现代深度学习技术】卷积神经网络 | 从全连接层到卷积
人工智能·pytorch·深度学习·神经网络·cnn
王国强200912 小时前
循环神经网络2-文本预处理:从原始文本到数字索引
深度学习