深度学习基础之《TensorFlow框架(1)—TF数据流图》

一、TensorFlow实现一个加法运算

day01_deeplearning.py

python 复制代码
import tensorflow as tf

def tensorflow_demo():
    """
    TensorFlow的基本结构
    """

    # TensorFlow实现加减法运算
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("TensorFlow加法运算结果:\n", c_t)
    print(c_t.numpy())

    # 2.0版本不需要开启会话,已经没有会话模块了

    return None

if __name__ == "__main__":
    # 代码1:TensorFlow的基本结构
    tensorflow_demo()
bash 复制代码
python3 day01_deeplearning.py

2024-02-16 01:04:36.715081: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2024-02-16 01:04:36.715126: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2024-02-16 01:04:38.803888: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2024-02-16 01:04:38.803994: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
2024-02-16 01:04:38.804045: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (server001): /proc/driver/nvidia/version does not exist
2024-02-16 01:04:38.804692: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
TensorFlow加法运算结果:
 tf.Tensor(5, shape=(), dtype=int32)
5

二、TensorFlow结构分析

1、TensorFlow程序通常被组织成一个构建图阶段和一个执行图阶段

在构建阶段,数据与操作的执行步骤被描述成一个图

在执行阶段,使用会话执行构建好的图中的操作

TensorFlow1.x构建和执行是分成两个步骤,TensorFlow2.x升级到了即时执行模式,所以就不需要会话了

参考资料:

https://www.jianshu.com/p/006d1292402b

https://blog.csdn.net/weixin_40920183/article/details/106718315

注:Session函数在2.x版本中有保留的tf.compat.v1.Session

2、图

这是TensorFlow将计算表示为指令之间的依赖关系的一种表示法

图定义了数据和操作的步骤

3、会话

TensorFlow1.x中跨一个或多个本地或远程设备运行数据流图的机制

4、张量(Tensor)

TensorFlow中的基本数据对象

5、节点

提供图当中执行的操作

三、其他注意点

1、不打印警告信息

添加:

python 复制代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

注意:要写在import tensorflow as tf的前面

2、如果要完全弃用2.x的功能(不建议)

添加:

python 复制代码
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
相关推荐
牙牙要健康34 分钟前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
Scc_hy1 小时前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
誉鏐1 小时前
从零开始设计Transformer模型(1/2)——剥离RNN,保留Attention
人工智能·深度学习·transformer
神经星星2 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
程序员Linc2 小时前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
补三补四3 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪3 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
贤小二AI4 小时前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
意.远4 小时前
在PyTorch中使用GPU加速:从基础操作到模型部署
人工智能·pytorch·python·深度学习
Uzuki10 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性