LLaMA 2 - 你所需要的一切资源

摘录

关于 LLaMA 2 的全部资源,如何去测试、训练并部署它。


LLaMA 2 是一个由 Meta 开发的大型语言模型,是 LLaMA 1 的继任者。LLaMA 2 可通过 AWS、Hugging Face 等提供商获取,并免费用于研究和商业用途。LLaMA 2 预训练模型在 2 万亿个标记上进行训练,相比 LLaMA 1 的上下文长度增加了一倍。它的微调模型则在超过 100 万个人工标注数据下完成。

这篇博客包含了所有的相关资源,以帮助您快速入门。包括以下跳转:

来自 Meta 官方的公告可以在这里找到: https://ai.meta.com/llama/

LLaMA 2 是什么?

Meta 发布的 LLaMA 2,是新的 sota 开源大型语言模型 (LLM)。LLaMA 2 代表着 LLaMA 的下一代版本,并且具有商业许可证。LLaMA 2 有 3 种不同的大小------7B、13B 和 70B 个可训练参数。与原版 LLaMA 相比,新的改进包括:

  • 在 2 万亿个标记的文本数据上进行训练
  • 允许商业使用
  • 默认使用 4096 个前后文本视野 (可以被扩展)
  • 70B 模型采用了分组查询注意力 (GQA)
  • 可由此获取 Hugging Face Hub

在 LLaMA 游乐场试玩

有几个不同的游乐场供与 LLaMA 2 来测试聊天:

  • HuggingChat 允许你通过 Hugging Face 的对话界面与 LLaMA 2 70B 模型聊天。这提供了一个简洁的方法来了解聊天机器人的工作原理。
  • Hugging Face Spaces 有三种大小的 LLaMA 2 模型 7B13B70B 可供测试。交互式演示可以让您比较不同的大小模型的区别。
  • Perplexity 他们的对话 AI 演示提供 7B 和 13B 的 LLaMA 2 模型。你可以与模型聊天并且反馈模型响应的不足。

LLaMA 2 背后的研究工作

LLaMA 2 是一个基础大语言模型,它由网络上公开可获取到的数据训练完成。另外 Meta 同时发布了它的 CHAT 版本。CHAT 模型的第一个版本是 SFT (有监督调优) 模型。在这之后,LLaMA-2-chat 逐步地经过人类反馈强化学习 (RLHF) 来进化。 RLHF 的过程使用了拒绝采样与近端策略优化 (PPO) 的技术来进一步调优聊天机器人。 Meta 目前仅公布了模型最新的 RLHF(v5) 版本。若你对此过程背后的过程感兴趣则请查看:

LLaMA 2 的性能有多好,基准测试?

Meta 声称 "Llama 2 在众多外部基准测试中都优于其他开源的语言模型,包括推理、编程、熟练程度与知识测验" 关于其性能你可以在这里找到更多信息:

如何提示 LLaMA 2 Chat

LLaMA 2 Chat 是一个开源对话模型。想要与 LLaMA 2 Chat 进行高效地交互则需要你提供合适的提示词、问题来得到合乎逻辑且有帮助的回复。 Meta 并没有选择最简单的提示词结构。以下是单轮、多轮对话的提示词模板。这个模板遵循模型的训练过程,在此详细描述 LLaMA 2 论文. 你也可以看一看 LLaMA 2 提示词模板.

单轮对话

复制代码
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_message }} [/INST]

多轮对话

复制代码
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_msg_1 }} [/INST]{{ model_answer_1 }} </s><s>[INST]{{ user_msg_2 }} [/INST]{{ model_answer_2 }} </s><s>[INST]{{ user_msg_3 }} [/INST]

如何训练 LLaMA 2

因 LLaMA 2 为开源模型,使得可以轻易的通过微调技术,比如 PEFT,来训练它。这是一些非日适合于训练你自己版本 LLaMA 2 的学习资源:

如何部属 LLaMA 2

LLaMA 2 可以在本地环境中部署 (llama.cpp),使用这样已管理好的服务 Hugging Face Inference Endpoints 或通过 AWS, Google Cloud, and Microsoft Azure 这样的服务器平台.

其他资源

如果你想让我再增添一些章节或其他细节请联系我。我致力于提供基于 LLaMA 2 目前已公开信息的高质量概述。


原文作者: Philschmid

原文链接: https://www.philschmid.de/llama-2

译者: Xu Haoran

相关推荐
AI大模型1 天前
轻松搞定百个大模型微调!LLaMA-Factory:你的AI模型量产神器
程序员·llm·llama
fly五行5 天前
大模型基础入门与 RAG 实战:从理论到 llama-index 项目搭建(有具体代码示例)
python·ai·llama·llamaindex
德育处主任Pro9 天前
前端玩转大模型,DeepSeek-R1 蒸馏 Llama 模型的 Bedrock 部署
前端·llama
relis10 天前
AVX-512深度实现分析:从原理到LLaMA.cpp的性能优化艺术
性能优化·llama
relis11 天前
llama.cpp RMSNorm CUDA 优化分析报告
算法·llama
云雾J视界11 天前
开源革命下的研发突围:Meta Llama系列模型的知识整合实践与启示
meta·开源·llama·知识管理·知识整合·知识迭代·知识共享
丁学文武12 天前
大模型原理与实践:第三章-预训练语言模型详解_第3部分-Decoder-Only(GPT、LLama、GLM)
人工智能·gpt·语言模型·自然语言处理·大模型·llama·glm
余衫马13 天前
llama.cpp:本地大模型推理的高性能 C++ 框架
c++·人工智能·llm·llama·大模型部署
LETTER•17 天前
Llama 模型架构解析:从 Pre-RMSNorm 到 GQA 的技术演进
深度学习·语言模型·自然语言处理·llama
拓端研究室17 天前
JupyterLab+PyTorch:LoRA+4-bit量化+SFT微调Llama 4医疗推理应用|附代码数据
llama